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Background: Self-Supervised Learning is a way of 
training robust feature-extractors in the absence of 
labels

Motivation: Most test-time adaptation strategies on 
OOD data assume that the pretrained feature 
extractor is tuned on an SSL + supervised 
objective. What if we try and do this process fully 
self-supervised?

Summary/Contribution: In this project, we apply 
common fine tuning methods from other domains 
(LoRA, EWC) to the DINO self-supervised training 
framework and observe their effects.

Datasets (ID/OOD):
● CIFAR-10/CIFAR-10.1
● CAMELYON-17 (Harmful/not harmful)

We perform test-time fine-tuning in 3 ways.
● Naive Fine-tuning (FT)
● Elastic Weight Consolidation (EWC)
● Low-Rank Adaptation (LoRA)

Self-Supervised Pre Training:
● DINO [1] is a method of training vision 

transformers by aligning representations on 
same-view augmented images between a 
student and teacher network, where the 
teacher network is an EMA of the student. 

Fine-tuning under domain shift:
● LoRA [2] and EWC [3] are works that allow 

you to finetune a network while operating with 
the constraint that your weights cannot move 
too far from initialization. 

Fine-tuning with SSL objectives:
● Recent work such as TTT++ [4] form the 

basis of the current state of the art of 
self-supervised test-time-fine-tuning. This 
work assumes access to the training labels, 
which isn’t always feasible in some settings 
(Ex: gigapixel imaging).
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Conclusion:
We find that naive fine-tuning, LoRA, and EWC either negatively impact the model (in the 
case of a high # of classes task like CIFAR-10/10.1) or only slightly improve model 
performance in the binary classification case of CAMELYON. This implies that 
SSL-pretrained ViTs can’t be simply fine-tuned by retraining the way they were trained, 
and instead require a more complex methodology. 

It’s also known that ViTs also traditionally require a lot of data, and our fine-tuning 
datasets are disproportionately small to our training datasets. This discrepancy could be 
another source of why we cannot fine-tune ViTs this way
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