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Structured Light Patterns via Differentiable
Rendering

Yasasa A

Abstract—Structured light systems are stereo vision systems that utilize both a projector and camera perform depth sensing instead
of the traditional multi camera stereo setups. These systems exist as an alternative to true active time of flight sensing systems such as
LiDARs when a low cost high resolution solution is desired. In such a structured light system, patterns must be projected in such a way
that the correspondences between the camera and the projector can be determined easily. Under simple scene geometries this
problem becomes trivial, however as we change the scene geometries and lighting conditions, it is unclear how to properly design such
patterns. We build upon prior work in pattern synthesis via optimization [1] to investigate the utility of differentiable rendering as an
option to model light transport in pattern optimization algorithms.

✦

1 INTRODUCTION

D Epth sensing is a key component for a wide variety
of applications in various fields such as industrial

automation [2] and robotics [3]. Traditionally done using
stereo vision systems composed of multiple cameras corre-
spondences were found using either hand tuned features or
deep learning based methods [4]. The performance of stereo
vision systems while being low cost and providing dense
measurements, lack reliability due to the problem of finding
correspondences in multiple images being a challenging
task.

On the opposing end, time of flight based sensing tech-
nologies such as LiDAR or Time-of-Flight camera’s per-
form depth estimation in an active fasion with a laser and
photosensor pulsing in synchronization to measure depth.
This approach to depth sensing gives exteremely accurate
results, however both temporal and spatial resolution lacks
compared to traditional multi camera stereo setups. The
primary bottleneck being the synchronization of the LiDAR
to photosensor to determine time of flight imply that only
one laser pulse can be sent and observed at a given time.

Structured light systems are closer to traditional stereo
systems in that they use low cost camera and projector
setups to perform stereo vision, however the sensor is
now active due to the projector involved. An overview
of a simple system is given in figure 1. Structured light
systems however do not measure time of flight, instead
perform correspondence between the observed image and
the projected pattern to perform depth estimation. This
allows us to capture images at the frame rate of the slower
sensor. Usually multiple images are required to solve the
correspondence, thus the true frame rate of a such a system
is still lower than a purely camera based stereo vision
system, this is the trade-off for being able to perform depth
estimation even when the scene doesn’t inherently have
enough features to determine correspondences. The main
question with structured light systems becomes, how do we
determine what patterns to project on to the scene?

We observe that in prior work this question has been
explored as both an algorithm design problem, where both
the pattern and the specific decoding algorithm were de-
signed [5], [6], as well as an optimization problem where

Fig. 1. Setup of a structured light system

requirements were specified and the corresponding pattern
was recovered as the solution to an optimization problem
that satisfied the requirements. In all of these methods, the
specific light transport between the projector and camera
was simplified. In this project, we analyze the pattern de-
sign problem considering the light transport in the form of
analytic models used in computer graphics [7].

2 RELATED WORK

2.1 Handtuned Projection Patterns
Traditionally, structured lights systems were designed with
a coded pattern that was intrinsically tied to the decoder un-
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der use [5], [8]. In the simplest case, we can use a graycode
pattern to unique identify the corresponding pixel by the
camera in logW images where W is the number of pixels
in one projector row. Since the lowest bits in a gray-code
patern will tend to have extremely high frequency, which
may get aliased, one may opt to use anti podal gray code
patterns [8]. Another option is to use the fact that projections
can project a range of intensities between 0 and 1, with
sinusoidal encodings [5].

Knowing that cameras and projectors are both capable
of outputting light in multiple frequencies, we can perform
color based decoding of the projection pattern [9], [10].
State-of-the-art methods for classical projection patterns use
information theory principles to determine optimal coding
patterns [6].

Current work on using structured light arrays that both
emit and measure polarization states of light show promise
in being able to detect objects through indirect light trans-
port, such as mirrors??.

2.2 Light Transport
The rendering equation [7] used widely in computer graph-
ics gives rise to the state of the art l analytical light transport
model using analytical light transport model under geo-
metric optic assumptions. However, such a light transport
algorithm is generally a complex function between the input
scene parameters and the output camera image, which
requires accurate physical material models to give plausible
results. Solutions to the rendering equation are posed as
Monte Carlo integrals over all possible paths between the
lights in the scene and the camera. With publically available
renderers [?], [11] that implement such solvers, we are able
to render high quality images of complex materials. We can
use such a model in order to simplify the design problem
for projection patterns.

2.2.1 Transparent material
Finding correspondences in transparent materials is in gen-
eral a difficult problem, due to the non-linear effects in-
troduced by such a material. If we consider the simplified
surface rendering equation from [12], ignoring the emmisive
terms we have:

L(x, ωo) =

∫
Ω
f(x, ωo, ω)L(r(−ω, x), ω)dω (1)

The surface light transport is determined purely by the
function f at a given surface point f . Since the integral is
recursive, we have the indirect surface effects also incor-
porated. Thus, in the case of a transparent material, we
expect the indirect light contribution to be higher than the
direct contribution. By explicitly modeling this indirect light
transport, we can ensure that two projector pixels x1, x2 do
not both correspond to a single camera pixel.

In the representation of f , we usually ignore effects due
to wavelength and polarization state, since we can choose to
render at several known wavelengths and keep the relevant
reflection models for those specific wavelengths. We can also
assume light that is unpolarized, i.e equally distributed in
the 3 different polarization states. However, we can remove
these assumptions to consider more complex transport ef-
fects with known physical models [13].

2.3 Differentiable Rendering

The complex light transport integral of [7], is often ap-
proximated as a Monte Carlo integral, thus the calculating
gradients for this integral becomes non-trivial, as the inte-
gral is recursive, thus for the evaluation of irradiance at a
single pixel we have multiple scene interactions that are
considered. In the that the domain of integration is con-
tinuous under the parameter under differentiation, we can
use Leibiniz rule to interchange the gradient and integral
in 1 [14]. This, allows us to estimate the gradient using
Monte-Carlo rendering as well, which, allows us to back
propagation to compute the vector jacobian products of the
rendering function. The rendering pipeline implemented in
Mitsuba 3 [11] is entirely end to end differentiable, allowing
us to compute the derivatives of a loss function that takes
the rendered image with respect to any scene parameters.

2.4 Optimal Structured Light

Optimization of structured light has been performed using
a simplified linear transport model in [1]. Where the as-
sumption is that the light detected on a row of pixels in the
camera come from the corresponding epipolar pixels in the
projector. This allows the sampling of transport functions in
a linear transport model to optimize for the corresponding
codes. The codes are optimized to minimize the missed
correspondences through a simple differentiable decoder.

2.4.1 ZNCC Decoder
The ZNCC decoder is a very simple decoding algorithm that
is optimal under zero noise conditions [1].

ZNCC(q, j) =
oq − ōq

∥oq − ōq∥
· cj − c̄j
∥cj − c̄j∥

(2)

Where we try to find the correlation between the projec-
tor pixel location in the pattern j for the camera pixel loca-
tion q. This calculation can be performed in parallel for each
row independently to obtain the decoded correspondences.

To determine the optimal correspondence, we need to
find the j that maximizes ZNCC for a given q:

Decode(q) = argmax
j

ZNCC(q, j) (3)

Thus, if we normalize ZNCC across j then we may
treat it as an approximation of p(j|q). To perform this
normalization, we use the softmax operation:

p̂(j|q; c) = exp(ZNCC(q, j))∑
j exp(ZNCC(q, j))

(4)

3 PROPOSED METHOD

Our primary objective in this work is to align the ZNCC
decoded correspondences with the true correspondences in
order to get the proper pixel disparity. We consider the
relaxed version of the ZNCC decoder given in equation 4.
Since ideally we want ZNCC(oq, cj) to be maximized only
for ZNCC(oM(j), cj) where q = M(j) is the transport model
that takes projector pixel cj to the corresponding camera
pixel oq .
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Fig. 2. Overview of the method, the renderer contains both an ambient light source as well as a projector. The camera is responsible for capturing
images both depth images and grayscale images of the scene. The gray scale images are used for the ZNCC decoder which approximates p̂ using
equation 4. The depth images are used to approximate the ground truth p using equation 5. We compute the mismatch loss between the two
distributions using 7, gradients of which are used to update the projection patterns.

Let the transported code vectors be ciM (j), where 0 ≤
i < N is the i-th code captured. Since the decoder ap-
proximately predicts the likelihood p̂(j|q), we want our
optimization to align this likelihood with the true likelihood
p(j|q). Given our transport function M , we can compute the
true likelihood as

p(j|q) =
{
1,M(j) = q

0,M(j) ̸= q
(5)

Given the ground truth likelihood, our goal is to match
the approximate likelihood to the ground truth, to do this
we minimize the KL divergence from p̂ to p

DKL(p|p̂) = −
∑
j

p(j|q)(log(p̂(j|q))− log(p(j|q))) (6)

The ground truth distribution has a fixed entropy, thus
we can simply optimize the cross entropy between p and q:

L(c) = H(p, p̂) = −
∑
j

p log(p̂) (7)

Now the question is how to compute M(j). Suppose
we are given the ground truth depth for the pixel d, the
transform from the projector to the camera is known to be
T c
p .Then, given a pixel in the projector space pij , we have:

M(j) = f−1
c (T c

p (fp(pij) ∗ d)) (8)

Where,

f−1
c

xy
z

 =

[
Fcx
z + cx

Fcy
acz

+ cy

]
(9)

and

fp

([
pi
pj

])
=

(pi − cx)
(pj − cy)

F

 (10)

Where F∗ is the focal length and a∗ is the aspect ratio.
cx, cy are the corresponding principal points.

In the typical structured light setting, we have the in-
trinsics and extrinsics of both the projector and camera
calibrated. The only things we are missing are depth mea-
surements for a given pixel. To compute the ground truth

depth measurement, we can use a camera located at the
projector, that renders the first geometry seen by the pixel.

An overview of our algorithm is given in figure 2.

3.1 Scene parameterization

The loss function in 7 does not make mention of the light
transport between the projector and camera, however in
the formation of the observations, we have an implicit
relationship between the projected pattern and the observed
images. We define this by a non-linear function, where c is
the full code image and o is the full observation captured by
the camera. ϵ ∼ N(0, σ2I) is Gaussian white noise added to
the observations, and a is the ambient light.

o = T (c) + ϵ+ a (11)

Loss in equation 7 is defined for the no ambient light,
with zero noise and a fixed T . In order to alter our loss, it is
equivalant to defining the

Lm(c) = ET,a,ϵ [L(c)] (12)

Where T and a are drawn from a uniform distribution
over possible transport functions and ambient lighting con-
ditions. We note that the expression in 12 is a marginal-
ization over all possible transport functions, ambient lights
and noise conditions. However, in our case, when using a
physically accurate renderer, the function T is generally in-
tractable to analytically define. Thus, we must approximate
the integral in 12 using samples.

I(Lm)(c) =
1

N

N∑
i

L(c;Ti, ai, ϵi) (13)

One way to semantically define the uniform measure
over transform functions, is to setup a parametrized scene in
the renderer S(p) which is used to generate the observation
T (c, S(p)), now, we can define a distribution over these
scene parameters p to construct our distribution of possible
transport functions. in order to optimize 13, we only need
to sample p̂ from a simple distribution.
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3.2 Indirect light transport

Since our cameras are a fixed transform away from the
projector, all lines in the projector will fall on the corre-
sponding epi-polar line in the camera. Thus, we can make
a further simplification for the code following [1], to create
a pattern that has no variation between the rows. However,
this assumption will break when we need to disambiguate
more complex light transport effects. On the other hand,
allowing the projector to vary as in both rows and columns
may allow use to still disambiguate objects under more
complex light transport phenomenon, we investigate this
in 4.2

3.3 Scene parametrization

Our method makes extensive use of the Mitsuba 3 renderer
[11], which uses the Dr.Jit [15] framework to dispatch pro-
grams on the GPU. First we sample a set of scene param-
eters, including ambient light, from a uniform distribution
p̂. We perform N renderings of the image in batch, each
with a different pattern texture on the projector. For each
rendering, we are able to render a single row, and decode
the row with equation 4. All H rows are then concatenated
to obtain the final decoded p̂. Then we compute the loss in
7, which constitutes a single sample in equation 13.

We use the Dr.Jit automatic differentiation to compute
gradients of the loss 13, ∇cI(L)(c). The pattern textures are
then updated using the Adam optimizer.

4 EXPERIMENTAL RESULTS

We investigate the following key goals with our experiments
carried out:

1) Does differentiable rendering allow us to generate
plausible projection patterns? We want to analyze
qualitatively the depth maps produced by our dif-
ferentiable renderer, as opposed to random patterns
that we may project on to the scene.

2) Can we incorporate transparent lighting models
into the optimization? The key advantage of differ-
entiable lighting models is the more complex light
transport models that it affords. To this end, we
want to determine whether we can generate pat-
terns for indirect light transport using differentiable
rendering

3) What is the effect of expanding our codes to be two
dimensional? With our non-linear light transport,
we can now model effects that take cause projector
pixels to bleed into adjacent epipolar rows in the
camera image, we want to investigate the perfor-
mance of incorporating these effects by testing the
optimization for a 2D optimization pattern.

We carry out our experiments in an experimental eval-
uation scene shown in ??, where the camera and projector
look at a cube in front of a wall. The reference pose used
to validate the performance of the pattern is with the cube
centered on the screen. The reference rendering of the pose
under ambient light is given in reference 3

In all our experiments in this section, we utilize the
Adam optimizer with a linear step size schedule between

Fig. 3. Experimental setup on the top and the corresponding sample
rendering with ambient light on the bottom

TABLE 1
Comparision of 1-D vs 2-D patterns optimized patterns

Pattern Type Average Depth Error(m)

Random 3.5

Gray Code 0.75

1-D 0.88

2-D 0.87

0.1 to 0.000001 and 200 optimization steps. For each eval-
uation of the loss function 13, we utilize 12 samples. In
each of the 12 samples, we randomize the pose of the cube,
and sample new random noise for the captured images. For
all experiments, use 5 observations each with their unique
projection pattern. The projector and camera both have field
of view of 60 deg, and resolution of 64× 128 pixels.

4.1 Diffuse Objects
To address question 1 and 3 above, we test the performance
of our method against a baseline of random projection
patterns, optimized patterns that are the same for all rows
and optimized two-dimensional patterns. The qualitative
depth maps of all three methods are shown in figure 4. In
table 1 we give numerical results for this experiment. We see
that generating a 2-D code does not provide a significant
advantage over the generation of a 1-D code under these
conditions. One of the possible reasons for this could be
that the optimization problem itself becomes much more
challenging under the presence of a 2-D code due to the
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Fig. 4. Depth maps generated from three different types of patterns. On the left is the depth map generated with a gray code pattern without any
optimization, on the second image are depth maps generated from 1-D optimized patterns, on the third image we see depth maps generated from
the 2-D optimized patterns, the final image gives the ground truth depth map generated from the true correspondences.

Fig. 5. On the top row are sample 1-D patterns, and on the bottom row are the sample of 2-D patterns optimized

higher dimensional search space. The sample generated pat-
terns are shown in figure 5. We see that the 2D patterns do
indeed utilize the extra design space as they are optimized.
However, the optimized patterns seem to have repetitive
structure, possibly signifying the optimizer getting stuck at
a local minimum of the loss.

We also compare the performance of our patterns against
hand tuned gray code patterns with the same decoder,
noting that gray code patterns take 7 images instead of the
5 we use for our tests. We see that the performance of our
patterns are competitive with gray code designed patterns
for these cases.

4.2 Transparent Objects
Our second experiment was to validate the second ques-
tion above. We want to replace the transport function in
the rendering equation with a transparent version. In this
setting we would expect the optimization to leverage the
additional information regarding light transport through the
material model to optimize patterns that can disambiguate
better than the prior optimized diffuse pattern and the
corresponding gray code pattern. Once again, we apply
both a 1-D and 2-D code for this problem to see whether
the utilization of the 2-D code in the case of indirect light
transport is useful. The results are given in table 2. We
find that the performance of the diffuse pattern compared
to the pattern optimized specifically for transparent objects
remain consistently similar, with the diffuse pattern being
even slightly better in the 2-D case. Sample depth maps from
the codes are given in figure 6

Again, our patterns were compared to the gray code
patterns, and in this case once again our patterns perform
similarly to the gray code patterns, while requiring 2 fewer
images.

5 CONCLUSION

We presented a system built on top of the Mitsuba 3 renderer
that leverages the differentiable rendering components to

TABLE 2
Comparision of 1-D vs 2-D patterns optimized patterns for transparent

objects

Pattern Type Average Depth Error(m) Diffuse Pattern Error(m)

Random 3.5 -
Gray Code 1.09 -

1-D 1.08 1.15

2-D 1.35 1.22

generate patterns for structured lighting systems. We ob-
served the effects of pattern design when we consider
patterns that vary in both dimensions spatially, and patterns
with one dimensional variation, where we saw that in
our current setup optimizing for 1-D patterns is sufficient
for determining a pattern that that can perform adequate
depth reconstruction. Our method of optimizing patterns
in an end-to-end fashion inside a differentiable optimizer
does yield sufficiently usable patterns for depth estimation,
beating random pattern generation, and performing com-
parable to gray code patterns while requiring few codes.
However, the gray code patterns do not explicitly consider
light transport, and in the case of transparent objects it
seems that our patterns are not using the knowledge of the
specific material to a large enough extent.
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