
1

From Pencil Lines to 3D Realms: Sketch
Stylization with NeRF

Steven Hyun, Pooja Ravi, and Itay Kozlov

Abstract—In this paper, we propose two distinct approaches to generate and stylize a 3D object from a 2D set of sketches. To our
knowledge, no prior work has been done on directly stylizing 3D models generated from sketches using neural radiance fields (NeRF).
First, we explored going from the sketches to stylized sketches and then to a 3D model. This enables coloring in the sketches based on
a style image to construct a 3D object with a specific style. We also investigated few-shot NeRF and different types of sketch
generation methods in our approach. The second method was going from sketches to a stylized 3D object directly. This required prior
conditioning based on text or images that could be fed in to guide the NeRF model directly. This approach allowed not only color editing
but also texture editing through the manipulation of density functions. In this paper, we demonstrate that going from sketch to stylized
3D object is not only possible but can be achieved through various methods.

GitHub repository: https://github.com/01pooja10/Sketch2D-To-Style3D

Index Terms—Neural radiance fields, sketch to 3D, Neural style transfer, CLIP

✦

1 INTRODUCTION

In recent times, the field of 3D modeling has been per-
vasive in various industries, going all the way from

animation and video games to life-saving applications in
healthcare research. Neural Radiance Fields (or NeRF) have
been at the heart of recent progress in this sphere, allowing
efficient compression of complex 3D scenes into distributed
neural representations. However, using NeRFs for 3D model
creation is not an easy task, and requires large samples of
perspective images to properly capture complex 3D scenes.
Some of these challenges were addressed by introducing
few-shot NeRF methods, reducing the number of images
required for training [1] and recent advances were able to
increase the flexibility of NeRF models through stylization
schemes [2], [3], allowing to stylize the generated 3D image
using example images, or text. However, one challenge
remains, the requirement for obtaining various high-quality
photo-realistic images to train the NeRF models on the 3D
scene.

It was the goal of this project to bridge this gap between
the artist’s vision and the 3D model by using a Sketch to
Stylized NeRF scheme. This will allow an artist to generate
a much simpler set of images in the form of sketches to be
provided to the model, along with text representation of the
desired 3D model style for more flexibility and control. This
way, a vibrant 3D model of the artist’s vision will only be a

• S. Hyun is with the MSc in Applied Computing program, University of
Toronto, Canada.
E-mail: steven.hyun@mail.utoronto.ca

• P. Ravi is with the MSc in Applied Computing program, University of
Toronto, Canada.
E-mail: p.ravi@mail.utoronto.ca

• I. Kozlov is with the MSc in Applied Computing program, University of
Toronto, Canada.
E-mail: itay.kozlov@mail.utoronto.ca

few sketches and one sentence away. The main contributions
of this work include:

1. Two novel methods for constructing a sketch to
NeRF pipeline were explored, these taking the gen-
eral forms ’sketch to style to NeRF’ or ’sketch to
stylized NeRF’.

2. Some initial testing of a few-shot sketch to NeRF
stylization were explored, paving the way for further
work and exploration in the field.

3. Existing NeRF modification through text approaches
were augmented by adding W-MSE and sparsity
terms to the loss function 1, with initial testing
showing promising improvement when training on
sketch-like images.

2 RELATED WORK

2.1 SNeRF
The authors of SNeRF [4] present a novel method to stylize
images post-rendering i.e. after obtaining the outputs from
NeRF. They propose the usage of two loss functions that are
minimized in parallel wherein the computational graph for
one doesn’t depend on or affect the other. The NeRF and
stylization modules are trained and optimized in tandem.
Note that here, the images are stylized once the outputs
have been rendered through NeRF. Further, the stylized
images (from different views) are again set as the target
images while training NeRF and this helps capture style
elements of each view separately.

2.2 CLIP-NeRF
CLIP-NeRF [5] is a multi-modal manipulation of neural
radiance fields guided by CLIP. It uses a disentangled con-
ditional NeRF that allows conditional generation based on

1. See related work section, 2.3.

2

shape and appearance conditioning. It also enforces view
consistency while allowing CLIP to modify the shape and
appearance of neural radiance fields. However, the authors
have not released the full code for the conditional NeRF.
Therefore, we use the color-editing code that they have
uploaded, which demonstrates the color editing of neural
radiance fields using CLIP without shape deformation.

2.3 NEF
The authors of NEF [6] present a way to reconstruct 3d
shapes from edges. NEF adopts the overall structure of
NeRF but instead uses it to reconstruct parametric curves
from a 2D set of images. It introduces different modifications
to enable the reconstruction of 2d edges into a 3d shape.
Most pertinent of all to us are the loss functions: W-MSE
and sparsity. Edges tend to be very sparse. If NeRF is trained
only on the edge maps of an image, it tends to degenerate
into a local optima [6]. W-MSE is a modified MSE loss
function that gives a higher weight to edge rays/pixels. It is
defined as: ∑

r∈Ri

W (r)||C(r)− Ĉ(r)||2

where

W (r) =


|C+|

|C+|+|C−| C(r) <= η
|C−|

|C+|+|C−| C(r) > η

|C+| denotes the number of edge pixels and |C−| denotes
the number of non edge pixels. This essentially gives higher
weight to any pixels that should be part of an edge and
lower weight to any pixels that are not an edge. This
assumes that the edge pixels are more sparse compared to
non-edge pixels. The authors set η to 0.3, which we also
follow.

Another loss function of interest is the sparsity loss.
Edges that are sparse in 2D images should also be sparse
in 3D as well. To enforce this sparsity, the authors use
a regularization term that encourages sparse densities for
non-edge pixels. The authors define sparsity loss as∑

i,j

log(1 +
E(ri(tj))

2

s
)

where i indexes non-edge pixels and j indexes the samples
that were taken along a ray. The authors set s = 0.5, which
we also follow.

2.4 InfoNeRF
In this work, the authors present InfoNeRF [1], an
information-theoretic regularization technique used to al-
low NeRF training with a low number of images (as little
as 4). This will also be referred to as a few-shot NeRF
throughout this report.

While this work is not directly related to the style-to-
NeRF objective of this project, it does represent a very
important aspect needed for the realistic implementation of
sketch to 3D. That is, making the process feasible for po-
tential users by reducing the number of sketches necessary
for training down a number producible by hand. Therefore,
the InfoNeRF model was experimented with as a potential
component of the sketch to 3D pipeline.

The essential idea behind this work is that the lack of
information that results from training NeRF on only a few
images can be resolved by performing a certain regular-
ization across the rays used when training the model. In
particular, the regularization term attempts to minimize the
total entropy across each ray, given by r, where the entropy
is defined by

H(r) = −
N∑
i=1

p(ri) log(p(ri))

where ri for i ∈ {1, 2, . . . , N} is a sampled point on
ray r, and p(ri) defines the ray entropy at point ri. The
regularization then uses the opacity

M(r) =

{
1 if Q(ri) > ϵ

0 otherwise

where

Q(r) =
N∑
i=1

1− exp(−σiδi)

with the terms σi and δi being the observed density and
sampling interval at point i respectively. The ray entropy
loss is then given by

Lentropy =
1

|Rs|+ |Ru|
∑

r∈Rs∪Ru

M(r)⊙H(r)

where Rs and Ru denote a set of rays from training
images and a set of rays from randomly sampled unseen
images respectively. Finally, another regularization term is
given for information gain reduction, taking the form

LKL (P (r)||P (r̃)) =
N∑
i=1

p(ri) log
p(ri)

p(r̃i)

where r̃ are rays obtained through slight rotations from
ray r. Using these two regularization terms along with
the typical difference loss term enables the few-shot NeRF
methodology. Intuitively, the idea is to make dense regions
more likely to be bunched together using the entropy loss
term and to ensure that rays stay mostly consistent with
slight viewing rotations using the KL-divergence term.

3 PROPOSED METHOD

3.1 Sketch Extraction

Before being able to train a NeRF [7] model on a set of
sketches from different perspectives of the scene, these
sketches must first be obtained somehow. Constructing such
a dataset, which may need to contain up to 100 different
sketches for some of the NeRF methods attempted here,
is a highly time-consuming process. Therefore, to test the
various methods explored in this project, it was necessary to
find a way to generate a large set of sketches automatically.
Conveniently, there already exist many data sets of natural
images taken from different perspectives of the same scene.
Therefore, a simple way to obtain a set of sketch-like images
for training involves extracting them from a set of natural
images through the edge information contained in them.

3

Two such methods were tested: one using PIDINet and
another using DFI 2, or Dynamic Feature Integration [8].

3.1.1 PIDINet

PIDINet [9] is a network that is used to extract the edges
within an image. There has been a lot of work on Con-
volutional Neural Networks as edge detectors. However,
convolutions do not have any inductive bias that encodes
gradients. This is the reason why the authors of PIDINet
came up with a different type of convolution called Pixel
Difference Convolution (PDC). Rather than focusing on
the values of the pixels themselves, PIDINet focuses on
the difference between the pixel values. This gives it an
advantage over traditional convolutions where the kernels
have to learn from scratch how edges are represented. We
opt to use PIDINet as our sketch generation network due
to its ability to surpass human perception in edge detection
with fast inference.

3.1.2 Dynamic Feature Integration

Dynamic Feature Integration (DFI) is a technique created
to extract three essential features out of a given image, these
being salient object segmentation, edge detection, and skele-
tal extraction. Two of these, namely object segmentation and
edge detection, are essential components for extracting a
sketch from a natural image (after all, a sketch can simply
be thought of as an edge map of the salient, or most notable,
elements of an image).

The simplest method one might think of when per-
forming sketch extraction with DFI is to multiply DFI’s
outputs together, namely the salient mask and the edge
map. Unfortunately, the edge map generated by DFI is
not sufficiently consistent in its masking within the salient
and non-salient regions, resulting in a highly noisy output
after multiplication. However, there is a simple step that
can make this method feasible. By passing the salient mask
through a Gaussian filter to essentially ’smear’ the mask
and remove the high frequency components, the output
becomes much closer to a sketch-like representation of the
original image. One last step that was found to be very
helpful was to then remove any other prominent details
from the background of the image by amplifying the whole
image and clipping it at the max value allowable for the
given image format. The overall algorithm used is shown in
algorithm 1 where an amplification of 15 was used (obtained
through experimentation).

Algorithm 1 Sketch Extraction Using DFI

1: procedure EXTRACTSKETCH(img)
2: img sal, img edge← DFI(img)
3: img sal← GaussianFilter(img sal)
4: sketch← img sal ∗ img edge
5: sketch← clip(sketch ∗ 15)
6: end procedure

2. Note that DFI-generated sketches were not used for testing most
of the NeRF stylization approaches in this project as this method was
discovered towards the end. So far DFI generated sketches were only
tested with InfoNeRF.

(a) Original image (b) DFI Extracted Sketch

Fig. 1: This shows an example of the sketches extracted
using the DFI algorithm described in 1, where figure 1a
shows the original image and 1b shows the resulting image.

3.2 Sketch to NeRF

3.2.1 Sketch to Style to NeRF

Once we obtain the sketches from PIDINet/DFI, the next
step in the first approach is to stylize them. For this firstly,
we identify a style image (a painting in our case) to con-
dition the sketches on. For the first approach, we condition
sketches on respective style images and further train and
retrieve the outputs from NeRF/InfoNeRF. This essentially
means that the 2D sketch-like edge maps need to be stylized
and for that purpose, we employ a style transfer module.

Style transfer is a widely used technique that preserves
the contents/objects in an image while modulating and
switching up the style/color elements of the same image.
The pretrained weights of multi-style transfer generative
network [10] called MSG-Net, have been used. This model
performs especially well when the image has a focus object
such as the Lego tractor in our case. It uses a co-match
layer which prioritizes learning the style-based second-
order statistics or the gram matrix intrinsically.

Using the style images (paintings in Figures 3 and 4), we
obtain the ground truth images that constitute the training
set for NeRF/InfoNeRF. But when the images are fed as
is, both NeRF and InfoNeRF weigh the background region
much more than necessary. This distorts the final output 3D
novel view since the background information is redundant
and more often than not affects the structure of the 3D
views.

For this reason, we removed the colors in the back-
ground by masking them out. By manually singling out the
edge pixels, we obtain the masks that preserve the shape
of the foreground region (the Lego tractor). All other pixels
are set to a value of 0 thereby giving the effect of a white
background with the stylized Lego tractor object acting as
the foreground region of significance.

Finally, we ended up with a training set of 100 images as
shown in Figure 5, and each of the 100 views was stylized
individually using the pretrained weights of the model
MSG-Net. 3

3. Of course, only a small number of these images was used to train
InfoNeRF, namely we tested it on training sets of 4 and 10 images.

4

Fig. 2: Approach 1 - Sketch to NeRF flowchart

Fig. 3: Style 1 image

Fig. 4: Style 2 image

Fig. 5: Stylized input images

This led to the final training phase wherein we adopted
and modified a Pytorch-based NeRF implementation and
the InfoNeRF implementation available on GitHub for our
training datasets. These NeRF models were trained from
scratch on the aforementioned stylized image dataset. The
3D views generated were observed over 40,000 training iter-
ations for regular NeRF and 30,000 iterations for InfoNeRF,
and results were periodically saved.

3.2.2 Sketch to Stylized NeRF
The approach taken here is to go directly from sketch to
stylized 3D. First, we take the 100 training images from
the LEGO excavator dataset and apply PIDINet. Then we
apply a sharpening filter to sharpen up the edges generated
from the model. We also generate a mask of the image using
a flood fill algorithm described in algorithm 2. Using the
modified loss functions described in section 2.3, we train
a standard NeRF model with W-MSE and sparsity loss for
20000 iterations. A sample generation from the NeRF model
is shown in figure 6.

Algorithm 2 Flood Fill Algorithm for Extraction of Back-
ground

1: procedure FLOODFILL(img, threshold)
2: img ← img > threshold
3: visited← array like(img)
4: for all boundary pixels p in image do
5: BFS(img, p, visited)
6: end for
7: return visited
8: end procedure

After the NeRF model is trained, we transfer the weights
from the NeRF model to CLIP-NeRF described in section 2.2.
We also modify CLIP-NeRF with a modified loss where only
the background and the edges are considered in calculating
the MSE loss. Therefore, the overall loss function for CLIP-
NeRF is

L = Ledge mse + Lclip

where Lclip is the original clip loss used in CLIP-NeRF.
Ledge mse is defined as

Ledge mse = ||target[edge mask]− gen[edge mask]||22

5

edge mask = bitwise or(target, background mask)

The edge mask is a combination of the background mask
and the target image (the edges). With this modified loss
function, we train CLIP-NeRF for 10000 iterations with a
text prompt. In this paper, we try different styles of sketches
and perform an ablation study on whether the modified loss
function qualitatively helps the output of the network.

Fig. 6: Output from NeRF on PIDINet Sketches

4 EXPERIMENTAL RESULTS

4.1 2D Style to NeRF Results:

The NeRF model was adapted and modified for two
datasets (different painting styles) consisting of 100 images
each. The images are 800x800 in resolution but NeRF was
trained using half res mode where resolution is reduced
from 800 to 400. Hence the rendered outputs also corre-
spond to the same resolution.

The NeRF model(s) were trained on the NVIDIA
GeForce RTX A4000 GPU with 16GB of allocated memory.
The training was performed for 40,000 iterations and the
model’s weights were periodically saved according to the
progress made during training. The PSNR values have been
displayed in Table 1.

For the purpose of testing the versatility of this approach,
two different paintings (style images) were used to transfer
style to the pencil sketches obtained from PIDINet. The
style images are displayed in Figures 3 and 4 for reference.
The reason we chose these images in particular was to
observe how texture-dependent our model(s) were. The first
style in Figure 3 contains sharper edges and different color
palettes for the different geometric shapes in the image. On
the contrary, Figure 4 contains many uneven patches and
specific colors inside said patches. The training dataset of
images shown in Figure 2 was mostly oblivious to the edges
present in the first style image but captured the patchy
appearance for style image 2.

TABLE 1: PSNR values

Models Maximum PSNR (dB)
NeRF - Style 1 28.73
NeRF - Style 2 26.42

Fig. 7: 3D views from NeRF

Hence, while training, a similar pattern was noticed in
the outputs rendered by NeRF. However, the model didn’t
fully converge and so the resulting 3D views generated (in
Figure 7) contained moderately blurred foreground regions.
As can be seen, the views for style 1-conditioned images
have better color distribution both on and across edges
whereas the color elements for style 2 get clustered around
the edges instead of spreading out evenly across the object’s
surface.

4.2 2D Style to 3D InfoNeRF Results:

Here, InfoNeRF stylized sketch rendering was attempted
using training sets with 4 and 10 images, and for both
PIDINet generated detailed sketches, and DFI generated
sparse sketches. The obtained results for this part along
with the corresponding initial and stylized sketches are
displayed in Table 2. It is evident that increasing the number
of training data in InfoNeRF does not have substantial
contributions to image quality, and still results in some
noisy regions. Interestingly, it was also observed that the
InfoNeRF rendering for the sparse sketch outperformed the
one for the detailed sketch, retaining at least some of color
pattern, unlike the one for the detailed sketch.

One possible explanation for this is that the regulariza-
tion function of InfoNeRF seen in Section 2.4 attempts to
eliminate the already low variation in the coloration of the
high detail sketch, while the stylization of the sparse sketch
is naturally more patchy already, as the style tends to stick
to the edges. That being said, further exploration is required
to properly analyze these results.

4.3 Sketch to CLIP-NeRF Results:

First, we tried training CLIP-NeRF on sketches directly gen-
erated from PIDINet with prompts ”A red Lego excavator”
and ”A green excavator”. The result is shown in figure 8

The CLIP-NeRF when prompted with information about
the texture of an object like ”lego”, tries to produce a lego-
like texture as seen in figure 8 with the yellow dots on the
surface. However, when prompted with just the color, it
only filled in the color instead. Also, the CLIP-NeRF did not
converge fully as the loss did not decrease after training for

6

TABLE 2: InfoNeRF results for 4-shot and 10-short training using both detailed PIDINet and sparse DFI generated sketches,
which are then stylized. InfoNeRF results were obtained after 30K iterations for each scenario.

PSNR (dB)
Sketch extraction method Original sketch Stylized & Masked sketch 4-shot InfoNeRF 10-shot InfoNeRF

PIDINet 26.40 27.63

DFI 29.34 30.06

(a) A Red Lego Excavator (b) A Green Excavator

Fig. 8: This shows the output from CLIP-NeRF with the
modified edge loss function when prompted with ”A Red
Lego Excavator” and ”A Green Excavator”

more iterations. This is likely due to the ”mode collapse”
of the NeRF where it gets stuck in a local optimum. This
was addressed in NeRF-Art [3] with relative directional
CLIP loss whereas CLIP-NeRF uses absolute directional loss
defined as the cosine distance between the rendered image
and the target text. However, we have tried implementing
relative directional CLIP loss for CLIP-NeRF but the output
did not change at all. We theorize that this is most likely
because we could not find a text prompt that adequately
describes the source image. In relative directional CLIP loss,
a pair of image/text embedding is required. That is, we need
the source image, source text, target image, and target text. If
the source text does not adequately describe what the source
image is, then it is very hard for the model to converge.

Also, we noticed that the output from these models had
very sparse colors. The reasoning for our modified MSE
loss was that we wanted CLIP-NeRF to focus on filling in
the gaps between the edges with color/texture information.
However, we found that when filling in the gaps, the color-
ing tended to be very sparse. To help mitigate this issue, we
flood-filled our training image with one color using a similar
algorithm as 2. A sample training set is shown in figure
9. We use the colored-in image and train the CLIP-NeRF
in the same way as before with the prompt ”A Red Lego
Excavator” to see if the prior colors mitigate the sparsity
observed above.

The result of using the red color-filled sketches is shown
in figure 10. We can see that it does mitigate the problem of
sparse colors, especially near the surface below the excava-
tor.

(a) Original (b) Flood-Filled

Fig. 9: 9a shows the original training image that we used. 9b
shows the flood-filled coloured image

Fig. 10: Output from CLIP-NeRF using Red Colour Filled
Sketches

Next, we performed an ablation study on the edge
loss added to CLIP-NeRF. Since there are no ground-truth
images, it is difficult to quantitatively assess the effect of
the edge loss. We use the red color-filled sketches, with the
prompt ”A Red Lego Excavator” to perform the ablation
study.

The result is shown in figure 11. We can see that for
figure 11b, the output is less detailed compared to 11a. For
instance, the surface where the excavator is sitting on is less
Lego-like for 11b. This is because CLIP-NeRF considers the
entire image when calculating the MSE loss. Therefore, if
the entire image is filled with one color, it is very hard
for texture to be added since there is a trade-off between
preserving the original image and stylization with the text
prompt. This was the intuition behind the edge loss where
we only consider the edge and the background in the

7

(a) Output from Modified
CLIP-NeRF

(b) Output from Original
CLIP-NeRF

Fig. 11: 11a shows output from CLIP-NeRF with the edge
loss. 11b shows the output from unmodified CLIP-NeRF

MSE loss. We wanted the MSE loss to only preserve the
edges/background and the CLIP loss to fill in the color and
detail in-between the edges. This can be evident through fig-
ure 11a where the wheels behind the excavator are colored
in while the original CLIP-NeRF was not able to color it in.

5 CONCLUSION

Our work delves deep into the following problem statement:
converting 2D pencil sketches (or edge maps) to stylized 3D
views using style transfer methods, neural radiance fields,
and text-prompt conditioning for a multi-modal approach.
To summarize, we present two novel approaches to tackle
this problem; first, we have stylization before rendering im-
ages from NeRF wherein we obtain the sketches, pass them
through the neural style transfer model (MSG-Net), mask
out the background, and then train NeRF on these stylized
images. Here stylization is pixel-consistent and the results
are in the style of the painting given. We also test a few-
shot model called Info-NeRF with 4 and 10 images to test
the ability of NeRF to reproduce reliable results with fewer
volumes of input data.This is because under more practical
circumstances, obtaining 100 views of pencil sketches with
pixel-consistent stylization and the corresponding camera
parameters is not viable. The second approach deals with
stylization using text prompts while outputs are rendered
by CLIP-NeRF. Here, we use transfer learning to substitute
the NeRF in CLIP-NeRF with our model trained on the
pencil sketches. This specifies a single color in the prompt
rather than conditioning on a style image/painting.

6 FUTURE WORK

Some limitations such as computational resource-related
constraints obstructed the training process. For example,
initially, NeRF was trained on a 12GB GPU but couldn’t
handle 800x800 images in their full resolution and hence
it had to be halved to prevent the out-of-memory error.
Further, even when trained on a 16GB GPU the model failed
to fully converge (after 40,000 iterations) as such an MLP-
query model needs to be trained in a full-fledged manner
to preserve the finer details such as crisper edges, clearer
textures, and smoother color gradients. This caused the
edges to bleed out and some details to be mildly blurred.
Another drawback was that during stylization, the style
elements from the paintings stuck to the prominent edges

instead of spreading evenly across the entirety of the object’s
surface. One possible reason could be the lack of denser
pixels as the input image was a pencil sketch. Edges retain
more style information while the spaces in between get filled
with a uniform color and while rendering through NeRF
also lose the painting texture.

Another future work that we want to explore is around
CLIP-NeRF. We want to investigate why there is a mode
collapse in CLIP-NeRF. One possible reason is due to its
CLIP loss function. We theorize that this loss function does
not provide sufficient guidance for the NeRF model to con-
verge. Therefore, we would like to further explore different
loss functions like the relative directional clip loss used by
NeRF-Art [3].

Hence we plan on addressing these aspects in our future
works.

ACKNOWLEDGMENTS

We would like to thank Professor David Lindell and our
mentor Parsa Mirdehghan for their timely guidance and
support. We would also like to thank other course instruc-
tors and staff for their involvement with the course and for
facilitating our project.

REFERENCES

[1] M. Kim, S. Seo, and B. Han, “Infonerf: Ray entropy minimization
for few-shot neural volume rendering,” 2022.

[2] Y. Chen, Q. Yuan, Z. Li, Y. Liu, W. Wang, C. Xie, X. Wen, and
Q. Yu, “Upst-nerf: Universal photorealistic style transfer of neural
radiance fields for 3d scene,” 2022.

[3] C. Wang, R. Jiang, M. Chai, M. He, D. Chen, and J. Liao, “Nerf-art:
Text-driven neural radiance fields stylization,” 2022.

[4] T. Nguyen-Phuoc, F. Liu, and L. Xiao, “Snerf: Stylized neural
implicit representations for 3d scenes,” 2022.

[5] C. Wang, M. Chai, M. He, D. Chen, and J. Liao, “Clip-nerf: Text-
and-image driven manipulation of neural radiance fields,” 2022.

[6] Y. Ye, R. Yi, Z. Gao, C. Zhu, Z. Cai, and K. Xu, “Nef: Neural
edge fields for 3d parametric curve reconstruction from multi-
view images,” 2023.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” CoRR, vol. abs/2003.08934,
2020. [Online]. Available: https://arxiv.org/abs/2003.08934

[8] J.-J. Liu, Q. Hou, and M.-M. Cheng, “Dynamic feature integration
for simultaneous detection of salient object, edge, and skeleton,”
IEEE Transactions on Image Processing, vol. 29, pp. 8652–8667, 2020.

[9] Z. Su, W. Liu, Z. Yu, D. Hu, Q. Liao, Q. Tian, M. Pietikäinen, and
L. Liu, “Pixel difference networks for efficient edge detection,”
2021.

[10] H. Zhang and K. Dana, “Multi-style generative network for real-
time transfer,” arXiv preprint arXiv:1703.06953, 2017.

