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Evaluating Recent 2D Human Pose Estimators
for 2D-3D Human Body Pose Lifting

Soroush Mehraban, and Yiqian Qin

Abstract—Monocular 3D human pose estimation is mainly about predicting 3D pixel coordinates of key body joints based on a 2D
image or video. Typically, the first step for 3D human pose estimation is to estimate 2D positions of human body key joints using an
off-the-shelf 2D human pose estimation model which is often times proposed a few years ago. In this paper, we evaluate the
performance of recently proposed 2D human pose estimation models on 2D-3D human pose lifting task. In addition, we propose three
merging strategies to combine the outputs of these 2D human pose estimators, and generate less noisy 2D inputs for 3D human pose
estimator, thus improve the 2D-3D human pose lifting performance. To conduct the evaluation, we use a popular benchmark dataset
Human3.6M. Among the four recent 2D human pose estimators, ViTPose generates the most precise 2D estimations for the majority of
the keypoints. In addition, it surpasses other recent 2D human pose estimators in terms of mean per-joint position error of estimated
3D sequences, resulting in better 2D-3D human pose lifting performance. For the three proposed merging strategies, they are all
proved to be effective in reducing the mean per-joint position error of estimated 3D sequences. Notably, manual merging performs the
best among the three strategies proposed, and achieves a 1.23% reduction in mean per-joint position error compared to ViTPose.
Code is available at https://github.com/SoroushMehraban/2DEstimatorEvaluation/tree/master

Index Terms—Computer Vision, Human Pose Estimation
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1 INTRODUCTION

MONOCULAR 3D human pose estimation is a funda-
mental and critical computer vision task that mainly

entails predicting 3D pixel coordinates of key body joints
(e.g., knees, hips, elbows) based on a 2D image or video. It is
being broadly used in a variety of applications (as illustrated
in Figure 1), ranging from augmented [1] and virtual reality
[2] to autonomous vehicles [3], and from clinical monitoring
[4] to human-computer interaction [5].

Currently, 3D human pose estimation still remains an
ill-posed problem due to depth ambiguities in 2D input
data. A general approach for estimating 3D human pose
involves two steps: (i) estimate 2D positions of human body
key joints from frames of the video using an off-the-shelf
2D human pose estimation models, (ii) pass the resulting
2D key joints estimations to the 3D human pose estimation
model as input to estimate their corresponding 3D key joints
positions. However, various 2D human pose estimation
models have been proposed lately, and their potential to
serve as less noisy 2D input for 3D human pose estimation
models remains unexplored.

In summary, the main contributions of our paper are:

• We evaluate the performance of recently proposed
2D human pose estimation models on 2D-3D human
pose lifting task. Specifically, the recent 2D human
pose estimators evaluated are TransPose [6], Mo-
gaNet [7], ViTPose [8], and PCT [9].
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Fig. 1. Examples of 3D human pose estimation applications (images
from left to right, top to bottom): Virtual Reality [2], Autonomous Vehicles
[10], Clinical Monitoring [11] and Human-Computer Interaction [2].

• We propose three merging strategies which com-
bine the outputs (2D key joints positions) of afore-
mentioned 2D human pose estimation models, and
generate less noisy 2D inputs for 3D human pose
estimation model, thus improve the 2D-3D human
pose lifting performance.

2 RELATED WORK

2D human pose estimation. These models receive a single
RGB image as input and output locations of main joints in
2D pixel coordinate. Cascaded Pyramid Network (CPN) [12]
introduces GlobalNet, a feature pyramid network aimed
at localizing keypoints that are easily detectable, such as
eyes and hands. Furthermore, the CPN incorporates an
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additional module called RefineNet, specifically devised
to handle the localization of occluded keypoints. Stacked
Hourglass [13] employs several stacked hourglass mod-
ules, enabling iterative bottom-up and top-down inference
processes. TransPose [6] uses a CNN backbone to extract
some high-level image features and then uses a transformer
encoder to process these extracted features. MogaNet [7]
proposes a new family of pure ConvNet structure which
shows competitive results in various computer vision tasks,
including object detection, semantic segmentation, and 2D
human pose estimation. ViTPose [8] utilizes only a pure
vision transformer for extracting image features and by
using two deconvolution layers as the decoder, it generates
heatmaps containing the 2D keypoints of different areas of
the body. PCT [9] proposes a structured representation to
explore the joint dependency. This way, they prevent the
model output to generate unrealistic pose estimates.

Monocular 3D human pose estimation. Originally, this
objective involved determining the 3D coordinates of joints
directly from video frames, without the need for any inter-
mediary processes [14], [15], [16], [17]. Inspired by the rapid
development and availability of accurate 2D pose estimation
models, these models currently receive a sequence of 2D
human pose as input and lift them to 3D coordinate system.
VideoPose3D [18] uses dialated temporal convolutions over
2D keypoints to infer the 3D pose sequence. PoseFormer [19]
is the first method that proposes spatial transformers to
extract intra-frame information between joints and tempo-
ral transformers to extract inter-frame information. Pose-
FormerV2 [20] enhances its computational efficiency by
utilizing a frequency-domain representation, which also
conferred robustness against abrupt movements in noisy
data. STCFormer [21] proposes two parallel branches, one
using spatial transformers and other using temporal trans-
formers. P-STMO [22] introduces masked pose modeling
and achieves a lower final error through self-supervised pre-
training. Enfalt et al. [23] reduce computational complexity
by utilizing masked token modeling. In StridedFormer [24]
the traditional fully-connected layers in the feed-forward
network of the transformer encoder are substituted with
strided convolutions. This modification aims to gradually
reduce the sequence length and effectively enhance the
central frame. MotionBERT [25] further improves the per-
formance by using spatial-temporal stack of transformers
in one branch and temporal-spatial transformers in another
branch. MotionAGFormer [26] uses spatial-temporal trans-
formers in one branch but leverages Graph Convolutional
Networks (GCNs) in another branch to capture a comple-
mentary information and output more accurate results.

Among all the 3D human pose estimation models, al-
though MotionBERT and MotionAGFormer achieve the best
final performance, they use Stacked Hourglass for 2D pose
estimation. Since there is some preprocessing on their 2D
input data that is unknown, for a fair comparison, we select
the 2D-3D lifting model used by others. They all use 2D
keypoints from VideoPose3D’s paper, estimated by CPN,
and the preprocessing steps are publicly available. Among
these models, we select PoseFormerV2 due to its accelerated
training capabilities, achieved by handling one-third of the
sequence in the time domain and converting the remaining
portion into the frequency domain through Discrete Cosine

Fig. 2. MS COCO and Human3.6M keypoints format. For models trained
on MS COCO dataset, we manually convert them to Human3.6M de-
noted by brown color.

Transform (DCT). Subsequently, only the low-frequency co-
efficients are utilized for subsequent processing.

3 PROPOSED METHOD

Our method involves using recent 2D estimation models,
trained on the MS COCO Keypoint dataset [27], to estimate
2D keypoints on the Human3.6M dataset [28]. Following
that, we use the estimated 2D pose sequences as input for
the PoseFormerV2 model and train the model to infer the
underlying 3D structure of the human body. Finally, we
propose multiple merging strategies to combine different
estimated 2D sequences and further improve the final per-
formance.

3.1 2D Human Pose Estimation
State-of-the-art models such as ViTPose, PCT, MogaNet,
and TransPose, trained on the MS COCO dataset, are used
to estimate 2D pose sequences for Human3.6M dataset.
However, the 2D pose output format differed from that
of the Human3.6M dataset. To align them, we manually
converted the formats as illustrated in Figure 2. Addition-
ally, we incorporated 2D pose sequences from the Video-
Pose3D paper, including CPN fine-tuned on Human3.6M
and Detectron with and without fine-tuning. While the fine-
tuned sequences were already in Human3.6M format, we
manually converted the Detectron sequences without fine-
tuning to match the required format.

3.2 Merging Strategy
Three different merging strategies are proposed to improve
the final 2D-3D lifting performance by introducing less
noisy 2D data.

Manual merging. For this merging strategy, each human
body keypoint of the different 2D estimators is compared
with a ground truth, and for a single keypoint estimated
with different 2D estimators, the one that has the least dis-
tance with the ground truth among all the training frames in
Human3.6M is selected. For the ground truth, we project the
motion capture 3D coordinates into 2D pixels by leveraging
the camera intrinsic and extrinsic parameters. Specifically,
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Fig. 3. 3D human pose estimation pipeline. Initially, a 2D pose sequence is derived from RGB video through the use of a 2D pose estimator.
Subsequently, PoseFormerV2 is trained to perform the task of lifting 2D poses to 3D, and the MPJPE is assessed as a measure of performance.
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In formula above, D = 4 is the number of 2D estimators
and T is the total number of frames in Human3.6M used for
training.

Average merging. In this merging approach, we com-
pute the average of ViTPose, PCT, and MogaNet for each
individual frame within the sequence. This averaging pro-
cess aims to mitigate the impact of noise in the 2D input.
Given that each estimator introduces varying levels of noise
for a specific frame, combining their outputs through av-
eraging is anticipated to yield a less noisy 2D input. This
strategy leverages the diversity in noise patterns among the
estimators, providing a more balanced and refined outcome
across frames. Note that TransPose is not used for averaging

because in general it is having more noise compared to the
rest (see experimental results for more details).

Weighted average merging. In this methodology, We
follow a similar path as before but introduce a refinement
by incorporating the confidence scores of each estimation as
weights in a weighted average. Notably, PCT provides con-
fidence scores in the form of logits rather than conventional
probability scores. To align these scores between 0 and 1, we
normalize the confidence scores of PCT by dividing them by
the maximum value within the sequence. Subsequently, we
normalize the confidence scores across various estimators
and employ them as weights in the weighted average.
This strategy allows us to account for the confidence levels
associated with each estimator’s output, offering a more
informed combination of results.

3.3 2D-3D Lifting

Following estimation of 2D pose sequences using differ-
ent estimators and the proposed merging strategies, Pose-
FormerV2 [20] is trained for the task of 2D-3D lifting (Fig-
ure 3). PoseFormerV2 takes a sequence of T = 27 frames
as input. To enhance computational efficiency, the central
T 0 = 3 frames are utilized in a spatial transformer to cap-
ture intra-frame relationships among various body joints.
To effectively capture long-range human dynamics in the
original sequence, all T = 27 frames are transformed into
Discrete Cosine Transform (DCT) coefficients, and a low-
pass filter retains N = 3 coefficients for each joint trajectory.
Subsequently, the output tokens from both the spatial trans-
former and the low-pass filter are combined and fed into a
temporal transformer. Within this transformer, an attention
module processes the tokens, with those associated with
the frequency domain directed to a Multi-Layer Perceptron
(MLP), while tokens related to the time domain undergo
conversion into the frequency domain through DCT. After
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passing through the MLP, they are reverted to the time
domain using Inverse Discrete Cosine Transform (IDCT).
Finally, a regression head module is employed to estimate
the 3D pose at the central frame. For both training and
evaluation, Mean Per Joint Position Error (MPJPE) is used.
It is defined as

L3D = ⌃T

t=1⌃
J

j=1kP̂t,j

�P
t,j

k, (5)

where J is number of joints, T is number of frames in
batch of data, and P̂ and P are the ground-truth 3D motion
capture and estimated 3D pose, respectively.

4 EXPERIMENTAL RESULTS

In this section, we’ll delve into the quantitative comparison
of the 2D outputs generated by each 2D estimator. We’ll
systematically assess the final results produced by the 2D-
3D lifting model when trained on varied 2D datasets. Sub-
sequently, we will qualitatively compare the ultimate 3D
output.

4.1 Quantitative Comparison between 2D sequences
The 2D sequences generated by different 2D estimators
are initially transformed into the Human3.6M format, as
illustrated in Figure 2. These converted sequences are then
compared with the 2D ground truth, calculated through the
3D-2D camera projection process outlined in Equations 2
to 3. For the comparison, we incorporate all the training data
from subjects 1, 5, 6, 7, and 8 in Human3.6M. Subsequently,
we calculate the average for each joint by considering all
frames across all the videos. The comparison for a subset of
joints is illustrated in Figure 4. ViTPose generally surpasses
other estimators in terms of mean per-joint position error,
leading to more precise keypoint outputs. Nevertheless,
for certain keypoints, such as the Left Knee, PCT tends
to yield more accurate keypoints on average compared to
ViTPose. We hypothesize that the disparities in errors across
various body regions can be attributed to the distinct biases
inherent in each model, stemming from the use of different
architectures. Building upon this concept, during manual
merging, ViTPose is predominantly employed. However,
for keypoints where PCT exhibits lower average errors
on training data, ViTPose’s estimations are substituted to
achieve less noisy 2D data.

4.2 Quantitative comparison between 3D sequences
Table 1 compares the estimated 3D sequences with the mo-
tion capture 3D ground truth on the Human3.6M dataset af-
ter training PoseFormerV2 using different 2D estimations as
input. By comparison, ViTPose, which demonstrates state-
of-the-art performance on the MS COCO keypoints dataset,
attains the lowest mean per-joint position error among the
four recent models assessed for this task. Nevertheless, the
ultimate performance is 2.96 mm lower when compared to
the scenario where PoseFormerV2 is trained with the CPN
model. It’s important to note that CPN undergoes fine-
tuning on the Human3.6M dataset. We consider this ap-
proach unfair since the training and testing data in the Hu-
man3.6M dataset share identical environments and cameras,

Fig. 4. The mean per-joint position error between each tested 2D esti-
mator and the 2D ground truth. ’L’ denotes left and ’R’ denotes right.

with subjects positioned at nearly the same distances. Con-
sequently, CPN may acquire biases from the Human3.6M
dataset that may not be applicable to real-world scenar-
ios where the subject is situated in a completely different
environment. Through the utilization of the 2D sequences
obtained via the merging strategies, we can enhance the
performance of PoseFormerV2. Among the various merging
strategies, manual merging proves to be the most effective,
resulting in a 1.23% reduction in error compared to ViTPose.

TABLE 1
The mean per-joint position error (mm) comparisons of estimated 3D

keypoints on Human3.6M after training the PoseFormerV2 model using
different 2D estimations.

2D Estimator finetuned MPJPE (mm)#
Detectron [2] ⇥ 59.56
Detectron [2] X 55.91
CPN [3] X 49.65
MogaNet [4] ⇥ 54.77
TransPose [5] ⇥ 66.20
PCT [6] ⇥ 53.26
ViTPose [7] ⇥ 52.61
Merge (Manual) ⇥ 51.96
Merge (Average) ⇥ 52.53
Merge (Weighted Average) ⇥ 52.50

4.3 Qualitative comparison between 3D sequences

Figure 5 visualizes the difference between sample estimated
3D sequences and the motion capture 3D ground truth
on the Human3.6M dataset after training PoseFormerV2
using different 2D estimations as input. Overall, the Pose-
FormerV2 trained by using 2D estimations from ViTPose
exhibits the best alignment with the ground truth (e.g., more
precise feet and hands estimations), compared to other three
recent 2D pose estimators evaluated for 2D-3D human pose
lifting task. Nevertheless, similar to the quantitative result,
it displays a slightly worse alignment with the ground
truth when compared to the scenario where PoseFormerV2
is trained with the 2D estimations from CPN model. In
addition, the PoseFormerV2 trained by using 2D estimations
from manual merging displays a slightly superior alignment
with the ground truth (e.g., slightly more precise hands es-
timations), when compared to other two merging strategies.
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Fig. 5. Qualitative comparisons of estimated 3D keypoints on Human3.6M after training the PoseFormerV2 model using different 2D estimations.
The transparent gray skeleton is the ground-truth 3D pose. The right part of the estimated body is denoted by red color, the torso and left part of
the estimated body are denoted by blue color.

5 CONCLUSION

Among the four recent 2D human pose estimators utilized
in the 2D-3D pose lifting process, ViTPose exhibited the
most promising results. Specifically, it generates the most
precise 2D estimations for the majority of the keypoints,
and achieves the lowest mean per-joint position error of
estimated 3D sequences. Additionally, we introduced three
merging strategies to combine the outputs of the 2D esti-
mators, and all proved effective in reducing the final error
in the estimated 3D sequences. Notably, manual merging
emerged as the most successful among the proposed strate-
gies, resulting in a 1.23% reduction in error compared to
ViTPose.
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