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Abstract—Optical imaging systems often face performance
challenges due to imperfections in the point spread function
(PSF), affecting resolution. In this project, we propose a com-
putational optical technique using speckle-pattern illumination
to correct aberrations without the need for adaptive optical
elements, addressing acquisition and complexity issues. Speckle
illumination, generated through light wave interference, offers
a promising solution for diverse applications, including tissue
imaging. Its inherent phase randomness effectively cancels out
aberrations, serving as a natural reference pattern for precise
PSF estimation and enhancing optical system quality.

I. INTRODUCTION

The point spread function (PSF) represents the response of
an optical system to a point source of light. It characterizes
how an idealized point source is transformed by the system,
influencing the distribution of light in the final image. The PSF
plays a pivotal role in determining the resolution and quality
of an optical system. Imperfections in the PSF, often caused
by inhomogeneities in the propagation medium or flaws in
optical components, can lead to distortions and degradation
in image quality. Strategies for addressing PSF imperfections
include the use of adaptive optical elements or, as proposed
in this study, computational optical techniques leveraging
speckle-pattern illumination to achieve aberration correction
for varying focal distances without additional complex optical
elements.

As mentioned the use of speckle illumination can correct
the aberrations caused by the optical elements in the system.
Speckle illumination is a technique in optical imaging that
harnesses random, granular patterns known as speckles, result-
ing from the interference of light waves [2]. In the context of
imaging systems, speckle patterns are employed to mitigate the
adverse effects of aberrations in optical systems. Unlike tradi-
tional methods relying on adaptive optics, speckle illumination
offers a natural and computationally efficient approach to
correcting aberrations without the need for additional adaptive
optical elements. The inherent phase randomness of speckles
plays a crucial role in canceling out aberrations present in the
illumination path, serving as a spontaneous reference pattern
for precisely estimating the PSF and improving the overall
quality of optical systems.

II. RELATED WORK

Introduced in 2016, the PSF Estimation from Projected
Speckle Illumination (PEPSI) technique offers a method for
estimating the point spread function (PSF) of an imaging sys-
tem [6]. The resolution of imaging systems is ideally limited
by diffraction, but practical issues such as inhomogeneities in
the light-propagating medium or optical imperfections often
degrade image resolution. PEPSI utilizes the randomness of

speckle patterns to counteract aberrations in the illumination
path, providing an objective pattern for assessing imaging
path deformations. Notably, PEPSI allows for wide-field-of-
view and local-PSF estimation without requiring calibration,
achieved through a single speckle-pattern projection.

Hwang et al. [5] propose a method for imaging through
turbulent media using short-exposure images. They recover
the Fourier power spectrum of objects by applying Labeyrie’s
autocorrelation method and Fourier transforming its output,
revealing that coherently averaging the images yields crucial
Fourier phase information.

Premillieu et al. [7] utilize speckle illumination and gradient
descent, combined with estimated shifted positions of an
object, to recover the illumination and point spread function
(PSF) of an optical system. An advantage of this approach
is its independence from prior knowledge about the optical
system. The resolution of the output is determined by the size
of the speckles.

Similar to [5], Hwang et al. [4] employ speckle illumination
but with sub-images, resulting in uncorrelated images. They
extract the estimated PSF magnitude through power spectrum
averaging and the estimated PSF phase through coherent
averaging.

III. PROPOSED METHOD

A. PSF & MTF Theory

The Modulation Transfer Function (MTF) quantifies the
ability of an imaging system to reproduce contrast variations
in an object. It is defined as the ratio of the contrast in the
image to the contrast in the object, as a function of spatial
frequency. The MTF curve provides insights into the system’s
ability to transfer various spatial frequencies, with a higher
MTF indicating better resolution.

The MTF equation is given by:

MTF (f) =
|I(f)|
|O(f)|

(1)

where, I(f) is the contrast of the image, O(f) is the contrast of
the object, and f is the spatial frequency of system. The MTF
is often expressed as a normalized function ranging from 0 to
1, where 1 indicates perfect transfer of contrast [8].

The PSF describes the distribution of light intensity in the
image resulting from a point source in the object space. The
PSF is essentially the impulse response of the system and
provides information about the spread of light over space [9].
The PSF can identify the spreading or blurring exhibited by
a point object which serves as an indicator of the imaging
system’s quality. The PSF equation is given by:



I(x, y) =

∫ ∫
O(u, v)h(x− u, y − v)dudv (2)

where I(x,y) is the intensity distribution in the image, O(u,v)
is the object intensity distribution and h(x,y) is the impulse
response of the system or commonly known as the PSF.

If seen closely, it can be said that the PSF is the spatial
domain version of the MTF. In other words, the relationship
between MTF and PSF is established through the Fourier
transform. The MTF is the modulus of the Fourier transform
of the PSF, illustrating the system’s frequency response. If we
take the Fourier transform of the PSF and rearrange the terms
we can see that,

MTF (f) = |F{h(x, y)}| (3)

Eqn-3 will help us identify and develop the simulations
required for the stated application. In summary, the MTF
quantifies the system’s ability to transfer contrast at different
spatial frequencies, while the PSF characterizes the spread of
light in the image.

B. Speckle Patterns

Speckles can be identified as a form of random noise. They
form when laser light interacts with rough surfaces, such as
paper or a wall, and imprints a distinctive granular pattern
with high contrast. The incident light of the laser is relatively
uniform but as they hit the surface they leave a random
intensity pattern fashioned by the mutual interference of a set
of wavefronts having different phases [2]. For the speckles
to be visible the coherence time needs to be relatively long.
Most real-world materials exhibit roughness on the order of
an optical wavelength, with exceptions like mirrors.

(a) (b)

Fig. 1: Speckles on rough surfaces: (1a) Speckles on a US Air
Force Target (USAF); (1b) Speckles on a tissue phantom

From Fig-1 it can be seen that for a laser source operating
at 680nm a speckle pattern is formed on two different surfaces
with their respective roughness. For the case of Fig-1a the laser
has a diffuser in the path causing the production of random
phases and thus an interference of a set of wavefronts leading
to a ”granular” pattern.

Fig. 2: Experimental Setup to obtain speckles on USAF target

Rolera EM-C2

CCD Camera (QImaging)

Pixel Size 8x8mm
Sensor Size 8x8µm
Resolution 1002x1002 pixels
Field of View (FoV) 6x6 cm

Nikon Camera Lens
Focus Distance 50 cm
Focal Length 50 mm
Aperture Size f/16

ThorLabs Lens Focal Length 50mm
VSCEL Source Wavelength 680nm
1” Diffuser Grit 1500

TABLE I: Specifications of Optical Components

C. Experimental Setup

Fig-2 shows the attempted setup of the system to obtain
speckle patterns on the USAF target. The components and
their specifications are laid out in Fig-2 and Table-I.

Note the images were captured in the dark to ensure that
there was enough light visible on the USAF target and that the
camera did not pick up noise from the surrounding light. The
diffuser used is on a rotating stage that will be rotated every
10◦ so that we can change the speckle pattern per defocus
distance. This will allow for varying data points at each
defocus stage and using those points we can develop a fine-
tuned PSF. Along with the given specifications of the optical
components we also ensured certain distances between the
target and the camera. Since we want to avoid magnification
from the camera to ensure we see the correct size of the
speckles, we calculate the magnification of the imaging path
for a region of interest (ROI):

M =
Length of Desired Image

Camera Length of Desired Image

=

Physical Size of Object
Pixel Count of Object ∗ Pixel Count of ROI

Camera Pixel Length of ROI ∗ Camera Dimensions

=

25400µm
965.488px ∗ 20.524px
72px ∗ 8µm/px

=
576µm

540µm
≈ 1.067

(4)

Eqn-4 shows that we are using approximately a 1-1 magni-
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fication system. Note that the diffraction-limited spot should
be smaller/approximately the size of a pixel. Moving onto the
next part is calculating the depth of focus (DOF). Our main
goal is to estimate the PSF for varying fields of focus using
speckle illumination. As we move the object within sections
of the depth of field we expect the PSF to get larger since
it gets more defocused and is imaged as larger circles rather
than points.

Depth of Field (DOF) =
2cs2

fN2

where:

DOF is the depth of field,
c is the circle of confusion,
s is the subject distance,
f is the f-number (aperture),
N is the f-stop number (aperture diameter).

(5)

c =
diagonal of sensor size

1730
=

8
√
2

1730
≈ 0.06655 mm

DOF =
2(0.06655 mm)(50 mm)2

16
(
50 mm
16

)2 ≈ 2.1296 mm

Eqn-5 shows us that our DOF is 2.1296mm. This means we
will place the target at 5cm, 5.05cm, and 5.1cm away from
the ThorLabs lens. Take note that the circle of confusion is
calculated using the Zeiss formula since the camera used does
not have a listed circle of confusion.

As stated for our purposes, we will use the USAF target
instead of fluorescent beads as used in [6]. The purpose will
be to show that we can try to estimate the PSF for a target that
has an unknown illumination pattern, unlike the fluorescent
beads. We hope to show that we can use the given algorithm
to identify speckles on the target and use it for various diffuser
stages to obtain a PSF at varying defocus distances.

D. Algorithm Breakdown
1) Simulation: The aim here is to simulate speckles and the

PSF of the optical system by modeling the light as it propa-
gates through various stages in the optical setup. The simulated
speckles will be used for estimating the experimental PSF and
the experiment PSF will be used to cross-validate the estimated
experimental PSF. The method used for simulating speckles
and PSF is described in more detail in chapters 5 and 6 of
Introduction to Fourier Optics by Goodman [1].

quad phase(X,Y, f, λ) = e−
j·(2π/λ)·Z

2·f ·(X2+Y 2)

(6)

aperture circ(X,Y, r) = (
√

X2 + Y 2 < r)
(7)

fresnel prop(X,Y, Z, λ) = ej·
π
λ · (X

2+Y 2)
Z (8)

uniform dist random phase(X,Y ) = ej·ϕd(X,Y ) (9)

MTF = F(Exit Pupil · Random Phase)F(Fresnel Prop)
(10)

PSF = |F−1(MTF )|2 (11)

We start by obtaining the parameters such as the light
wavelength (680nm), source after diffuser radius (2.5mm), and
diffuser-to-object distance (35cm). The PSF is then calculated
using the inverse Fourier transform of the MTF, and the
resulting speckles are normalized.

Once we have the simulated speckles we move onto simu-
lating the PSF for different distances within a two-lens optical
system. It involves the Fresnel propagation of each stage, exit
pupil calculations, and lens propagations. The MTFs for each
stage are computed using Fourier transforms, and the final
PSF is obtained by taking the inverse Fourier transform of the
product of these MTFs. The resulting PSFs are normalized
and returned for analysis. Fig-3 shows the optical path from
the USAF target to the camera sensor and highlights the MTF
and PSF at each stage.

Fig. 3: Optical Path of USAF Target to Camera Sensor at best
focus

We then use the following given MTF expressions to
formulate the PSFs as follows. Starting at the first stage:

MTF1 = F(Exit Pupil · 1st Lens · Propagation from target to lens)
(12)

For the second stage, assuming no pupil, the MTF is given
by:

MTF2 = F(Propagation from 1st lens to camera lens)
(13)

The PSF at the middle stage is calculated as the inverse
Fourier transform of the product of the MTFs:

PSFmid = F−1(MTF1 ·MTF2) (14)

Post-normalization, we move to the front of the camera lens
and simulate the propagation through the camera lens:
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Light Wave = PSFmid · (Propagation through camera lens)
(15)

MTF3 = F(Propagation from camera lens to sensor)
(16)

The total PSF is then obtained as the inverse Fourier
transform of the product of the remaining MTFs:

PSFtot = F−1(F(Light Wave) ·MTF3) (17)

These simulations are then used to generate computer
simulations of our optical setup which is then used as a prior
knowledge token in the estimation of the PSF based on speckle
illumination.

Fig. 4: Simulated Speckles described from Goodman [3] for
a distance of 50.5mm

2) Speckle Extraction: The PSF recovery method requires
that speckles be detected on the simulated and captured
experimental data. This is accomplished by detecting areas
of the image with relatively higher intensity. In this work,
this is performed by using the Laplacian of Gaussian method
which is implemented in the scikit-image feature detection
package [10]. The σmin and σmax values are chosen manually
so that only a single speckle is detected per window and
the window sizes are the same, the threshold value should
be set sufficiently high so that speckles are detected and not
extraneous objects in the background.

(a) (b)

Fig. 5: Speckle Extraction for (5a) noisy image with applied
PSF and (5b) simulated speckle pattern

3) PSF Estimate/Recovery: As described in Meitav et. al
[6], recovering the speckles becomes an error minimization
problem:

ϵ = E{|P −G · I|}2 (18)

with solution:

F−1(G · I) = F−1

I · 1

Sc

|Sc|2

|Sc|2 + 1
c2

|N ′|2
|P |2

 (19)

where:
• Sc is the Fourier transform of the computer simulation

of the average speckle
• I is the Fourier transform of the averaged speckle from

experimental data
• 1

c2
|N ′|2
|P |2 is a term that is dependant on the noise distribu-

tion, in our work this term was set equal to the inverse
SNR.

This solution arises from the observation that for non-
overlapping speckles we can model the average speckles as:

il
c
= p⊛ (

k

c
sl) +

nl

c
(20)

• p is the PSF
• ol is the average of the flurosecent densities, this is

averaged into a constant factor.
• sl is the average speckle intensity.
• nl is the average noise function.
• k is the average of the objects fluorescent density (con-

stant in our case).
• c is a normalization factor so that i1

c has total intensity
of one.

Fig. 6: PSF Estimate for best focus vs theoretical PSF retrieved
from simulation data

IV. EXPERIMENTAL RESULTS

Based on the optical setup in Fig-3 we captured sets of
images for 3 focal distances. For each focal distance, we
changed the angle of the rotation stage to apply different phase
changes for the diffuser. The purpose of this was to obtain
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different speckle patterns for the same distance and see if we
could recover the PSF across all the images.

Fig. 7: Data captured from USAF target at best focus (50mm)

From Fig-7 we can observe that the speckle pattern illu-
minated on the USAF target is very small. These points are
too small for the given speckle extraction algorithm to detect.
Recall that we want to identify singular speckles per window
and so the current data set shows us our first limitation, speckle
size. This leads us to use synthetic data developed from the
specifications of the optical setup provided.

Fig. 8: Synthetic Data Pipeline to represent the speckle pattern
illuminated on the USAF target with applied noise (all values
are derived from specifications of the optical parts)

Based on these figures and simulation data we can move
forward to estimating the PSFs for varying focal distances
and comparing them to their theoretical results. To verify the
performance of the proposed algorithm, we will conduct 2
tests: measurement of estimated PSF vs theoretical PSF for
varying distances with fixed noise (50 dB) and measurement
of estimated PSF vs theoretical PSF for varying noises at a
best focal distance (50mm). Using these data results we can
then do a qualitative and quantitative analysis.

(a) (b)

(c)

Fig. 9: PSF Intensity Comparisons for (9a) best focus at 50mm,
(9b) mid focus at 50.5mm, (9c) worst focus at 51mm.

(a) (b)

(c)

Fig. 10: Test 1: (10a) Deconvolution comparison at best
focus (50mm); (10b) Deconvolution comparison at mid focus
(50.5mm); (10c) Deconvolution comparison at worst focus
(51mm)

SNR applied to image (dB) 50 20 10 6.699

PSNR post deconvolution (dB) 25.696 25.694 25.691 25.691

TABLE II: Test 2: PSNR of deconvoluted images using the
estimated PSF at best focus (50mm) for varying noise levels

V. DISCUSSION

As briefly stated earlier, Fig-5a shows the data captured on
the USAF target at best focus. If seen closely, we can identify
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speckles illuminated on the target from the source to be about
the size of a pixel. As we vary the distance the size may get
larger but since it is very small to detect the effect imprinted
by the PSF we are unable to use these captured images for our
PSF estimation. To overcome this hurdle we can develop sets
of synthetic data that mimic what our optical setup will have.
The creation of simulated experimental data is achieved by
the pipeline outlined in Fig-8. We start by capturing the target
and simulating the speckle pattern of our optical setup. We
then multiply these values to mimic the speckle illumination
on the target and convolute it with the theoretical PSF for the
varying focal distances. Finally, we can add some photon shot
noise that represents the noise added by the sCMOS camera.
The final image in Fig-8 will then be used as the replacement
of the experimental data to estimate the PSF.

It can be seen in Fig-9 that for varying focal distances the
simulated PSF of the illumination path starts to grow and
develop more airy disks. This result makes sense as the focal
length increases, the convergence of light rays becomes more
gradual resulting in larger airy disks. Note the airy disk is a
pattern that occurs due to diffraction and can be related to the
aperture of the optical system. From our results, we can see
that at best focus (Fig-9a) the intensity of the PSF is mainly
around the center of the disk and then it starts to spread out
and quickly decays away. The estimated PSF shows a similar
pattern and as we increase the focal distance the estimated
PSF becomes larger and smoother (Fig-9c) which explains the
effects of the airy disk pattern.

The performance of the algorithm is strongly dependent
on the accuracy of speckle extraction, this can be seen by
examining equation (20). If single speckles are not distinguish-
able then the algorithm will have poor performance. As seen
in Fig-10, we see that at the best focus, the PSF recovery
performs worse than expected, at mid-focus, it performs better
and at the worst focus it performs worse. At best focus the
speckles are small so it is difficult to detect speckles due to
the speckle being smaller than the detection threshold. At mid-
focus the performance does slightly improve as the speckles
are larger and easier to detect and at worse focus the speckles
are overlapping and hard to distinguish. Table-II shows that
at best focus and varying noise levels, the recovered PSF is
roughly the same, this is because when averaging the speckles,
the noise gets averaged out.

VI. CONCLUSION

In our experiments, we found this algorithm did not perform
as well as expected and the main reason for this was the
speckle extraction algorithm. Future improvements would be
different experimental setups for larger speckle sizes and using
various magnification ratios to see if that would make speckles
easier to detect. Note this may lead to some modification of
the algorithm to compensate for the change in magnification
but based on the magnification ratio we can add it to the
speckles extraction method. Using more accurate methods
speckle extraction would also be a path to explore.
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