
1

Regularizing 3D Gaussian Splatting for Sparse
Input

Quanhong Liu, and Vanessa Yu

Abstract—Radiance field techniques have gained popularity for novel view synthesis. Among these, 3D Gaussian Splatting (3DGS)
stands out for its quality and speed. However, 3DGS encounters difficulties when handling sparse input data, resulting in overfitting and
unwanted artifacts in the generated images. To address this limitation, we explore the integration of geometry regularization techniques
inspired by RegNeRF. Our approach involves randomly sampling unobserved viewpoints based on input camera positions and
rotations, followed by rendering depth images and calculating a depth smoothness loss. This new loss metric is then combined with the
standard loss used in 3DGS to create a comprehensive loss function. Despite the effectiveness of our regularization approach in
scenes with gradual depth variations and bounded structures, challenges remain. Specifically, our method may struggle to handle rapid
depth changes within localized regions and distant background objects. In conclusion, our project demonstrates promising
regularization techniques for 3DGS but also highlights areas where further refinement is needed, particularly when dealing with scenes
featuring abrupt depth variations and distant background elements.

Index Terms—3D Reconstruction, Novel View Synthesis, Radiance Fields

✦

1 INTRODUCTION

M ETHODS associated with radiance fields have become
increasingly popular for the purpose of synthesizing

novel views. The objective is to produce images of a scene or
object from perspectives that were not included in the initial
set of views used for model training.

Recently, 3D Gaussian Splatting (3DGS) [1] has emerged
as a notable technique, drawing considerable interest in
various fields. This method excels in providing high-quality
results, fast reconstruction speeds, and the capability for
real-time rendering. It conceptualizes a 3D environment by
deploying many 3d Gaussians, and uses a rasterizer for
rendering. While 3DGS stands out as an effective method for
creating novel views in a scene, it struggles with handling
sparse input data. In situations where it is provided with
a limited number of input views, 3DGS tends to overfit
to these specific images. This overfitting leads to a failure
in accurately capturing the broader, global structure of the
scene. Consequently, this might result in the appearance of
floating artifacts in the scene, detracting from the overall
quality and realism.

One approach to avoid overfitting is by regularization.
However, the difference in the model structure and render-
ing method makes the existing regularization techniques
for NeRF not easily applicable to 3DGS. To address this
problem, we want to investigate a way to incorperate reg-
ularization technique to 3DGS for handling spare inputs.
Drawing inspiration from RegNeRF, we first randomly sam-
ple unobserved viewpoint cameras based on input cameras’
positions and rotations for each iteration. Next, similar to
how a pixel’s color is rendered in 3DGS, we render a depth
image. This involves determining the expected depth for
each pixel as seen by the unobserved viewpoint camera.

• Quanhong Liu and Vanessa Yu are with the Department of Computer
Science, University of Toronto, Canada.
E-mail: {quanhong, vyu}@cs.toronto.edu

With the depth image in hand, we proceed to calculate
a depth smoothness loss. This new loss metric is then
combined with the standard loss used in 3DGS and form
our final loss.

We have also discovered that certain optimization tech-
niques employed in 3DGS negatively affect the model’s
performance when dealing with sparse input.
To summarize, our main contributions are the following:

• We modified the optimization process in 3DGS for
better handling sparse inputs.

• We proposed a novel Gaussian depth calculation
method for 3DGS.

• A geometry regularizer for depth maps rendered
from unobserved viewpoints, which improves
scene geometry and avoid overfitting.

2 RELATED WORK

2.1 Radiance Fields
Neural radiance field (NeRF) [2] is an emerging technique
for synthesizing realistic 3D scenes using a large Multi-
Layer Perceptron (MLP) model. The model optimizes a con-
tinuous 5D neural radiance field representation of a scene
from a set of input images. Despite its success, this method
has several limitations. The original NeRF suffers from its
large computational expense. InstantNGP [3] tackles this
issue by adopting a multi-scale grid to replace positional
encoding. In Mip-NeRF [4], the traditional method of point-
based ray tracing is substituted with cone tracing to address
issues of sampling and aliasing. To further extend on that,
Mip-NeRF360 [5] addresses the problem of scalability and
unbounded scenes in the original NeRF.

3DGS tackles challenges related to speed (for both train-
ing and rendering), scalability, and handling unbounded
scenes. Unlike the NeRF related techniques [2], [3], [4], [5]

2

Fig. 1. model overview

which train neural networks to map points or volumes
to color and volume density and then perform volume
rendering by ray casting, Gaussian Splatting trains a set of
anisotropic 3D Gaussians and uses a rasterizer for Gaussians
for fast rendering.

2.2 Sparse Input Novel-View Synthesis

One approach to acheive Sparse Input Novel-View Synthe-
sis is by regularizing appearance and geometry in novel
views. Previous works in this direction include DS-NeRF
[6] and DietNeRF [7] and RegNeRF [8]. RegNeRF proposed
a regularization suitable for NeRF based models for better
geometry and color permanence with fewer input views
provided. By regularizing the geometry and appearance of
patches rendered from unobserved viewpoints and using
a normalizing flow model to regularize the color of un-
observed viewpoints, RegNeRF obtained some outstanding
results. Since RegNeRF shows that regularizing scene ge-
ometry has a much bigger impact on the performance than
appearance regularization, we are going to focus on the
geometry regularizer in our project as well.

3 PROPOSED METHOD

We build our model based on 3DGS code base. In the
initialization phase, like RegNeRF, we randomly sample
unobserved viewpoint cameras based on the input cameras.
In each training iteration, in addition to rendering an input
camera for the color image, we also render an unobserved
camera but render for depth image. We then calculate the
geometry loss based on the depth image rendered for the
unobserved camera and add the geometry loss to the total
loss. The overview of the whole model is illustrated in Fig.
1.

3.1 Sampling Camera

In the initialization phase, we sample unobserved viewpoint
cameras to be used for depth image rendering in training
iterations. Like in RegNeRF, we need to sample a position
and a rotation for each camera. We define the space of all
possible camera locations as the bounding box of all input
camera positions

St = {t ∈ R3|tmin ≤ t ≤ tmax}

Fig. 2. Example sampled cameras

where tmin and tmax are the elementwise minimum and
maximum values of all input camera positions, respectively.

For the sample space of camera rotations, We make the
assumption that all cameras are approximately centered on
one focal point within the scene. We establish a shared
”up” axis, denoted as p̄u, by calculating the normalized
average of the up axes from all input cameras. Subsequently,
we determine a mean focal point, denoted as p̄f , by ad-
dressing a least-squares problem to identify the 3D point
that minimizes the squared distance to the optical axes
of all input cameras. Additionally, we introduce random
perturbations to the focal point prior to the computation
of the camera rotation matrix. Hence, the set of all possible
camera rotations, given the position t, is

SR|t = {R(p̄u, p̄f + ϵ, t)|ϵ ∼ N (0, 0.125)}

Here, R(·, ·, ·) represents the resulting camera rotation ma-
trix, and ϵ represents a minor perturbation introduced to the
focal point.
Hence we obtain our randomly sampled camera as:

SP = {[R|t]|R ∼ SR, t ∼ St}

See Fig. 2 for sampled camera examples.

3.2 Depth Calculation:

Gaussian Depth Calculation In the rasterization process,
we calculate the depth of a Gaussian when rendered to a
pixel by first transforming the Gaussian from world space to
ray space using EWA splatting [9] and then computing the
expectation of the Gaussian conditional to the pixel location.
To transform a 3D Gaussian G with mean µ and covariance

3

matrix Σ from world space to ray space with camera spec-
ifications (view matrix W , focal length fx and fy), we first
transform the Gaussian’s mean to get its mean t in camera
space:

t = Wµ

Then we compute the affine Jacobian as:

J =

fx/tz 0 −fxtx/t
2
z

0 fy/tz −fyty/t
2
z

tx/l ty/l tz/l

where l = ∥t∥

Then we compute the Gaussian’s covariance matrix V in ray
space as:

V = JWΣWTJT

In this ray space, the x and y coordinates represent the
location on the camera screen, and the z coordinate rep-
resents the distance to the camera. 3DGS already uses EWA
splatting to obtain the 2D covariance on the screen V2D

by skipping the third row and column of V. We utilize
k = (V3,1,V3,2) (row vector) to calculate the mean of the
conditional distribution of z given x and y in ray space as:

E(z | x, y) = µz + kV−1
2D((x,y)T − µ)

We use this mean as our depth of the Gaussian respect to a
pixel, so

d = E(z | x, y)

Expected Depth Calculation We calculate our expected
depth for a given pixel similar to how 3DGS renders color
for a given pixel. 3DGS renders an image by rasterizing
the gaussians through α-blending. For an ordered set of
Gaussian that covers the pixel, we have:

C =
∑
i∈N

ciαiTi

where Ti =
i−1∏
j=1

(1− αj)

where C is the color of the pixel, ci is the color of the ith

Gaussian computed using the sphere harmonics features
and the viewing direction, and αi is the opacity of the ith

Gaussian rendered to the pixel’s location.
Hence, similar to the above equations, we calculate our
expected depth as:

D =
∑
i∈N

diαiTi

where D is the expected depth of the pixel, di is our
calculated depth of the ith Gaussian.

3.3 Loss

Depth Smoothness Loss We formulate our depth smooth-
ness loss as:

LDS(θ, Cr) =
∑
r∈Cr

1

WH

∑
i,j

(d̂θ(rij)− d̂θ(ri+1j))
2

+(d̂θ(rij)− d̂θ(rij+1))
2

where W,H is the width and height of the image
respectively, d̂θ(ri+1j) is the expected depth at pixel i, j;
θ is the model parameter and Cr is the random sampled
unobserved camera views. Note that, for pixels that have
no Gaussian contribution to them, we do not include them
when calculating the geometry loss.

Original Loss in 3DGS The orginal loss in 3DGS is:

L(θ, Ci) = L1 + LD−SSIM

It’s a l1 loss combined with a D-SSIM term, where Ci is the
input camera views.

Total loss The total loss we optimize in each iteration
is:

Ltotal = L+ λDLDS

where λD is a hyperparameter.

3.4 Camera Extent Change

When training the models (both 3DGS and our model)
in sparse input, we discovered that the original code of
pruning Gaussians that are too large has a dramatic negative
effect on the results. We figured it’s because the camera ex-
tent, which determines the pruning threshold, is computed
by the distance between input cameras which is usually too
small in sparse input. After all, Colmap cannot generate a
point cloud for a dataset that is both sparse and scattered.
Therefore, we utilized the average focus point we calcu-
lated when generating random cameras, and computed the
maximum distance between it and the cameras, and the
maximum between it and the original camera extent to get
the new camera extent. With this change, we make the 3DGS
capable of handling concentrated cameras.

3.5 Training Details

When training our model, we use a λD of 10−2. We take 3
images as training data and train for 7000 iterations. We use
2 images as testing data. We train on one NVIDIA RTX 4070
Ti GPU.

4 EXPERIMENTAL RESULTS

We show three sets of results to demonstrate the
regularization ability of our model and its limitations.

4

4.1 Room

4.1.1 test results

Ground Truth

3DGS 3DGS w/ Extent Change Ours

PSNR: 15.03 PSNR: 24.43 PSNR: 25.16
SSIM: 0.7547 SSIM: 0.9102 SSIM: 0.9147
LPIPS: 0.3787 LPIPS: 0.1513 LPIPS: 0.1509

From the above results we can tell that our extent change
method and the regularizer works quite well on the Room
scene. Our model is able to acheive the best performance
among all three. From Fig. 3, we can tell that the original
3DGS is able to acheive about an equal performance till
iteration 3000. Our extent change method is able to fix that.

4.2 Trex

4.2.1 test results

Ground Truth

3DGS 3DGS w/ Extent Change Ours

PSNR: 15.88 PSNR: 22.25 PSNR: 21.96
SSIM: 0.6954 SSIM: 0.8219 SSIM: 0.8143
LPIPS: 0.3510 LPIPS: 0.2294 LPIPS: 0.2357

Our extent change still has an effect on the above result,
but our geometry regularizer fails probably because the
scene has a lot of high-frequency domains, such as the
skeleton and the stairs, which our geometry regularizer
cannot maintain.

Fig. 3. Room - (up) test psnr, (bottom) train psnr vs. iteration plot

Fig. 4. Trex - (up) test psnr, (bottom) train psnr vs. iteration plot

4.3 Truck

4.3.1 test results
Ground Truth

3DGS 3DGS w/ Extent Change Ours

PSNR: 13.53 PSNR: 13.76 PSNR: 13.09
SSIM: 0.4981 SSIM: 0.5255 SSIM: 0.5397
LPIPS: 0.4728 LPIPS: 0.963 LPIPS: 0.5799

From the above result, we can see that both the extent
change and geometry regularizer do not work anymore.
This is probably due to the unbounded nature of this scene.

5 CONCLUSION

We investigated a way to incorporate geometry regulariza-
tion in RegNeRF to 3DGS for handling spare inputs. Our
key insight is that our regularizer is effective in scenarios
where scenes are reasonably confined and exhibit gradual

5

Fig. 5. Truck - (up) test psnr, (bottom) train psnr vs. iteration plot

depth variations. However, it falls short in enhancing model
performance when the input image contains abrupt depth
changes in localized regions, as our depth smoothness loss
cannot effectively capture such variations. Additionally, our
regularizer is less effective when the background is sig-
nificantly distant from the central object. In this situation,
our regularizer tends to concentrate all elements toward the
center of the scene and fails to produce a realistic outcome.

6 LIMITATIONS AND FUTURE WORK

In this project, rendering an additional camera in each
iteration to generate depth image is quite computationally
heavy. We believe that investigating pre-trained models
designed for efficient and accurate depth estimation could
be a promising direction for further exploration. Another
limitation to consider is our utilization of the depth smooth-
ness loss. This particular loss may not be the most suitable
option when the input image exhibits rapid depth variations
within a confined local area. Moreover, integrating the color
regularization technique from RegNeRF [8] and exploring
other regularization methods could potentially result in
improved performance.

REFERENCES

[1] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d
gaussian splatting for real-time radiance field rendering,” ACM
Transactions on Graphics, vol. 42, no. 4, July 2023. [Online]. Available:
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” CoRR, vol. abs/2003.08934,
2020. [Online]. Available: https://arxiv.org/abs/2003.08934

[3] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Trans. Graph., vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022. [Online].
Available: https://doi.org/10.1145/3528223.3530127

[4] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla,
and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-
aliasing neural radiance fields,” ICCV, 2021.

[5] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and
P. Hedman, “Mip-nerf 360: Unbounded anti-aliased neural radiance
fields,” CVPR, 2022.

[6] K. Deng, A. Liu, J. Zhu, and D. Ramanan, “Depth-supervised
nerf: Fewer views and faster training for free,” CoRR, vol.
abs/2107.02791, 2021. [Online]. Available: https://arxiv.org/abs/
2107.02791

[7] A. Jain, M. Tancik, and P. Abbeel, “Putting nerf on a diet:
Semantically consistent few-shot view synthesis,” CoRR, vol.
abs/2104.00677, 2021. [Online]. Available: https://arxiv.org/abs/
2104.00677

[8] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger,
and N. Radwan, “Regnerf: Regularizing neural radiance fields for
view synthesis from sparse inputs,” CoRR, vol. abs/2112.00724,
2021. [Online]. Available: https://arxiv.org/abs/2112.00724

[9] M. Zwicker, H. Pfister, J. van Baar, and M. H. Gross.

