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Abstract—Recent advances in Deep Learning enable explicit, multi-
modal cloud removal from satellite imagery using synthetic aperture
radar (SAR) inputs as auxiliary data source. However, to fully assess
the usability of those predictions, they must prove to be applicable in
downstream applications as well. Using land cover classification as an
example, we explore the efficacy of an explicit cloud removal step in a
satellite image processing pipeline by testing the predictive performance
on a classification network, which was trained on corresponding cloud-
free data. Our findings confirm that cloud-removed data is performing
better than using out-of-distribution cloudy images during inference,
but still demonstrates a significant performance gap to ideal, cloud-
free patches. Further, a certain bias in mispredictions can be observed,
specifically decreasing performance on classes that include high spatial
frequency details (e.g. Urban, Forest). A qualitative input feature attribu-
tion reveals that even non-cloudy, detailed areas of images get blurred
in the cloud-removal step, such that the classifier confuses them for less
detail-reliant classes (e.g. Croplands, Grasslands).

1 INTRODUCTION

The availability of multi-spectral satellite imagery has sig-
nificantly increased with new and more earth observation
satellites, creating numerous important applications, among
others change monitoring, weather forecasting, land cover
classification, and disaster monitoring. However, a major
and unavoidable challenge in satellite imagery is cloud
cover: approximately 67% of the Earth’s surface is covered
with clouds at any given time, with land masses experienc-
ing cloud covering of 55% on average [1]. Generally, clouds
obstruct visibility and complicate the aforementioned appli-
cations, essentially creating an image reconstruction task, in
which parts of the image’s information is missing and has
to be restored.

To tackle this issue, various approaches for cloud re-
moval from satellite images have been devised. Traditional
methods have proven to be limited in their effectiveness,
especially with opaque cloud cover. Deep Learning models,
trained with datasets that include cloudy imagery, implicitly
condition the network to ignore the cloudy regions. Aside
from that, explicit cloud removal has gained popularity, es-
pecially with advanced architectures like Generative Adver-
sarial Networks (GANs) and Diffusion models. Moreover,
the integration of synthetic aperture radar (SAR) data has
proven to be an effective auxiliary data source to assist
cloud removal models, further enhancing the performance
of cloud removal methods.

Using land cover classification as an example, we explore
the efficacy of an explicit cloud removal step in a satellite

image processing pipeline rather than disregarding those
images in the case where a model has not seen cloudy
images during training and therefore not learned to ignore
cloudy regions. For such a separate cloud removal step to
become standard, the generated image distribution must
align as closely as possible with cloud-free data, ensuring
the highest quality results. In this work, we compare the
performance of cloud-removed data from a state-of-the-
art Deep Neural Network with corresponding cloud-free
satellite imagery on the task of land cover classification,
specifically using a model that is trained on cloud-free data.
With this, we want to address whether researchers and
industry using models that have been trained on cloud-free
data could benefit from using cloud-removed data addition-
ally (instead of disregarding it), e.g. to get better real-time
monitoring. Further, we provide a data separability study to
estimate the proximity of data distributions between cloud-
free and cloud-removed satellite images. Lastly, to explore
the qualitative impact of the reconstructed image regions
to the final output, an input feature attribution study with
Gradient-weighted Class Activation Mapping (Grad-CAM)
[2] is performed and reported.

2 RELATED WORK

In general, cloud removal via Deep Learning can be
categorized two-fold: Mono- vs. multi-modal and mono-
vs. multi-temporal approaches. In multi-modal approaches,
auxiliary data (most often SAR data) is used to improve
the reconstruction results, which has been proven effective
in various studies. Grohnfeldt et al. [3] proposed a
conditional GAN which includes SAR data from the
ESA Copernicus Sentinel-1 mission. Meraner et al. [4]
presented paired Sentinel-1 SAR and Sentinel-2 cloudy
and cloud-free data in a data set called SEN12MS-CR
and, alongside, a novel Convolutional Neural Network
(CNN) architecture for cloud removal. Other multi-modal
Deep Neural Network architectures for cloud removal
are models utilizing other GAN variants (cycle-consistent
GANs in [5]), self-attention mechanisms [6] [7] or diffusion
models [8]. In multi-temporal architectures, matched
images from the same patch across time are used to
complement clouded areas and ideally allow for at least
some cloud-free information in every part of the image.
Examples include again GAN-based methods [9], CNNs
[10], self-attention models [11] and diffusion models [12].
Often, multi-temporal approaches have difficulty with
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rapidly changing landscapes (e.g. agricultural regions) due
to the limited revisit time of earth observation satellites
to the same region. Also, the matching process of images
itself is additional overhead that has to be performed before
cloud removal can be applied. Ebel et al. [10] therefore
presented an extension to the SEN12MS-CR data set called
SEN12MS-CR-TS, which includes multiple cloudy images
per cloud-free ground truth, enabling multi-temporal
support. Both SEN12MS-CR and SEN12MS-CR-TS are
de-facto standard datasets in this area of research [4] [5] [12]
[8] [10] [11] [6] [13] [14] [15] [7].

For downstream task evaluation, Gu et al. [14] demon-
strate with the use case of land cover classification that
explicit cloud removal results in higher precision and recall
compared to a network that is trained on cloudy data
and assumed to learn to ignore cloudy regions in the
input implicitly. Further, Gawlikowski et al. [13] demon-
strate the issues that arise from out-of-distribution test data,
i.e. cloudy data, when training on cloud-free images, as
most satellite imaging data sets are published with cloudy
patches removed. With land cover classification as their
downstream task, they employ a detailed analysis of the
data distribution of images per land cover class and cloud
coverage, classification results per class as well as network
confidence predictions, finding that models make overcon-
fident and wrong predictions with increasing cloud cover.
Additionally, they investigate the input feature attribution
via so-called saliency maps, indicating the model’s attention
to certain pixels conditioned on a particular prediction class
and show that cloudy and cloud-free data can be effectively
separated by analysing the network logits (activations be-
fore applying the last softmax layer), demonstrating a clear
difference in data distributions.

What both downstream task evaluations lack however is
a detailed analysis of cloud-removed images compared to
cloud-free data. By achieving very good results expressed
in metrics like structural similarity (SSIM), peak-signal-to-
noise ratio, etc., it is unclear whether those results are
enough to perform well in downstream tasks. Ideally, the
proximity of cloud-free and cloud-removed data distribu-
tions is so high that downstream tasks cannot distinguish
between them and work as well on cloud-removed data as
on real cloud-free images.

3 METHODOLOGY

3.1 Data Set
Due to the need of both land cover classification labels and
cloudy images for given cloud-free satellite observations,
this work utilizes both the SEN12MS [16] and SEN12MS-CR
[4] datasets.

SEN12MS was published in 2019 and contains 180,662
triplets of 256px× 256px patches, originating from the ESA
Copernicus Sentinel 1 and Sentinel 2 missions. Each triplet
contains a Sentinel-1 (S1) SAR image with two polarimetric
channels (VV, VH), a Sentinel-2 (S2) multi-spectral optical
image with 13 channels and a Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover map using four
difference classification schemes. The triplets are derived
from so-called scenes, which are sampled from all inhabited
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Fig. 1: Cloud coverage histogram on test data set (3982
images).

continents and across all seasons. For this work, in order
to confine computational load, only approximately 1/4 of
scenes are utilized (selection seed 1158). They were taken
in spring as defined on the northern hemisphere (1 March
2017 to 30 May 2017), but still cover all continents like the
full data set. For the classification labels, the International
Geosphere Biosphere Programme (IGBP) scheme in its sim-
plified version is used, containing 10 different classes. For
each patch, a single label is defined by the mode of all single
pixel classes.

In order to pair the patches from SEN12MS with cloudy
data, the compatible SEN12MS-CR is utilized, which was
created with the intention of exploring cloud-removal in
Deep Learning. Next to the S1 and S2 patches, it includes
a cloudy S2 image from the same meteorological season
in order to limit surface changes, amounting to 157,521
patches in total. All patches in the data set are intersected
with SEN12MS to have quadruplets of S1, S2, S2 cloudy
and land cover data, resulting in 28,396 patches. Using the
train, validation and test splits defined for SEN12MS-CR,
set sizes of 22,124, 2,290 and 3,982 are obtained respectively.
The cloud cover distribution in the test set is shown in
Figure 1 using standalone cloud detector s2cloudless [17]. It
is apparent that the cloud coverage seems to be distributed
uniformly except the very high cloud coverage between
90-100%, which occurs more frequently compared to the
rest. As this distribution will tend to challenge the cloud
removal model more, it is expected to see more pronounced
differences between cloud-free and cloud-removed data due
to the bias towards near-full cloud coverage.

Another statistic on the data set is the class distribution
on the pre-defined data set splits, visualized in Figure 2. It
is apparent that there are pronounced imbalances between
the classes, as e.g. Shrub Land, Wetlands, Snow & Ice and
Barren are hardly represented at all, while Savannas make
up approx. 30% of the training set. The validation split
composition of classes also differs from the train and test
sets, especially for Forest, Croplands and Urban & Built-
up. Nonetheless, the distributions (especially train and test)
are comparably similar, which is why no adaptation of the
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Fig. 2: Class distribution histogram on data set.

data set splits is carried out. Further, an adaptation of splits
would mean the exclusion of pre-trained models for the
cloud removal step, which have been trained on those data
splits.

3.2 Cloud Removal

In order to compare the cloud-free patch performance
against a cloud-removed counterpart, the paired cloudy
images are handed to a pre-trained state-of-the-art cloud
removal Deep Neural Network to obtain cloud-free predic-
tions. This is done with all patches from the test set only,
as the other splits were used in the training process. As
cloud removal model, the mono-temporal and multi-modal
version of UnCRtainTS by Ebel et al. [11] is utilized, as it is
the best performing model to the best of our knowledge at
the time of writing. Primarily intended to work on another,
more recent evolution of SEN12MS-CR containing time-
series of cloudy images (in order to ideally see all areas in
a patch cloud-free at least once), it outperforms all other
mentioned related work in the mono-temporal setting as
well except for SSIM, in which it is the second best model
after [6]. Architecturally, it features an encoder to spatially
encode the cloudy input and an attention mechanism oper-
ating on downsampled feature maps to compute attentions
masks. Applying those masks to the spatially encoded fea-
ture maps, a decoder produces the cloud-removed output.
Next to its performance, the model architecture is chosen
due to the availability of open-source code and pre-trained
model weights. The output of this step are cloud-removed
predictions for all test set patches.

3.3 Land Cover Classification

Having obtained the cloud-free predictions from the cloud
removal model, the downstream task of land cover classi-
fication can be explored. For that, a Convolutional Neural
Network is trained on the cloud-free train and valida-
tion splits, before exposing it to the cloud-free and cloud-
removed patches during inference. The outputs for both
classes of patches are analysed in a subsequent step. For

the model architecture, a common and widely used clas-
sification architecture is taken, namely a ResNet50 [18]. In
a study of Schmitt et al. [19], the authors benchmarked
different architectures for land cover classification (includ-
ing a ResNet50 and DenseNet121), and reported adequate
performances for these architectures. They also utilize the
SEN12MS dataset, however with different splits, such that
the pre-trained models for land cover classification cannot
be employed. Instead, their open-source code is slightly
adapted and used as a basis for training. In order to match
the expected input size of the model, all images are cropped
to 224px × 224px. An overview of the full methodology is
shown in Figure 3

4 EVALUATION

The evaluation of the land cover classification task features
a comparative performance analysis of cloud-removed and
cloud-free data, as well as a separability study to estimate
the proximity of data distributions. Moreover, a qualitative
analysis shall be carried out, highlighting differences in the
input patch areas between both classes.

To bridge the gap to the metrics used in the cloud-
removal step and examine their correlation with down-
stream task performance, we will introduce the peak-signal-
to-noise ratio, the structural similarity index (SSIM), and
spectral angle mapper (SAM) [20].

PSNR is a pixel-based metric comparing the mean
squared error per pixel between images and scaling by the
maximum possible signal (therefore, the higher, the better).

PSNR(x, y) = 10 · log10
(

MAX2
I

MSE(x, y)

)
In contrast, SSIM focuses on large-scale structures and

perceived visual similarity instead of per-pixel comparisons.
It computes the luminance, contrast and structure between
the images and outputs the weighted sum of those. It is
limited in [0, 1], where higher means better. Lastly, SAM
computes the angle between two image spectra (lower is
better). By normalizing both, it is insensitive to gain factors
and rather focuses on the similarity of spectrum composi-
tion. It is computed as

SAM(x, y) = arccos

(
x · y

∥x∥2 · ∥y∥2

)
Ideally, by scoring well in those metrics, the recon-

structed images should be suited for downstream tasks,
which is subject of this study. For the classification, well-
established metrics will be used to compare the predic-
tions. For performance, the precision, recall and F1-score are
computed from the confusion matrix. Macro averaging is
used as averaging method across classes, because the data
set is imbalanced, still all classes receive the same weight.
Accuracy is not a suitable metric due to the imbalance in
the distribution.

By using cloud-removed images for inference on a clas-
sifier trained on cloud-free data and observing the net-
work’s outputs, this can be seen as an application of Out-
of-Distribution detection to determine whether cloud-free
and cloud-removed patches can be easily separated by the
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Fig. 3: Methodology approach for comparing cloud-removed and cloud-free performance in land cover classification.

model’s predictions, indicating a dissimilarity in data dis-
tributions. Different metrics exist to use for the separation,
based on the model’s logits (outputs before applying the
softmax function to obtain probabilities) or the probabilities
itself. Gawlikowski et al. [13] provide several examples of
metrics, which are adopted in this study. We will inves-
tigate separability based on the maximum probability (or
confidence), entropy of the output probability vector, sum of
the logit values (logit-sum), and so-called precision, i.e. sum
of exponential logit values. For all metrics, the area-under-
the-curve (AUC) for precision/recall (PR) and receiver-
operating characteristic (ROC) curves will be measured,
whereas an area of 1 corresponds to perfect separability.

To understand what might drive mispredictions on
cloud-removed data and which scenarios most problems
are caused by, a qualitative input feature attribution method
called Gradient-weighted Class Activation Mapping (Grad-
CAM) [2] is performed. This method computes the gradient
∂yc

∂Ak
of a logit yc for an output class c with respect to k fea-

ture maps Ak in the last convolutional layer of a CNN (just
before the fully-connected layers), as those layers promise
the most correspondence between semantic meaning and
spatial structure in the network. Then, those gradients are
averaged in each feature map (called global average pool-
ing) to obtain a weight αc

k indicating the influence of this
particular feature map on the output class.

αc
k =

1

H ×W

∑
i

∑
j

∂yc
∂Ak,i,j

A saliency map Mc for this class (in the dimensions
of the last convolutional layer) is then computed as linear
combination of all feature maps with the alpha values as
weights, fed into a rectified linear unit.

Mc = ReLU

(∑
k

αc
kAk

)
In a final step, the saliency map is upsampled bilinearly

to the dimensions of the input, indicating which parts

of the input are salient in the classifiers prediction for
the particular class. Despite recent work [21] uncovering
weaknesses in Grad-CAM due to the global averaging of
gradients, which can cause highlighting of regions that have
not contributed to the prediction, the method is still used
due to the qualitative-only nature of this analysis step, as
well as time constraints in the project.

5 RESULTS

Exemplary predictions of the pre-trained UnCRtainTS on
the test set are shown in Figure 4. It is apparent that the
model is able to reconstruct the image well when there
are only thin or partial clouds. The thicker the clouds and
the more high-frequency details are present on the ground
cover (e.g. urban areas), the worse the model performs.
In case of full cloud cover, the model has to rely solely
on the SAR data which is insensitive to clouds and has
to infer the optical reconstruction without any reference,
recognizable by similar structures, but different colors in
the predicted image. The pre-trained model’s performance
according to the presented metrics is shown in Table 1,
alongside the reported values from the original study [11].
It is apparent that the quality of the reconstruction in terms
of the image reconstruction metrics is comparable to the
original work, making the application of the cloud-removed
images suitable to be evaluated in the downstream task.

TABLE 1: UnCRtainTS performance on selected test set

Test set PSNR SSIM SAM

Ours 28.79 0.884 8.10
Ebel et al. [11] 28.90 0.880 8.32

5.1 Classifier Training

The ResNet50 is trained based on the open source code
of Schmitt et al. [16], with all hyperparameter settings as
proposed in their work. For the entirety of the training and
tests in the downstream task, only the multi-spectral S2
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Fig. 4: Example predictions of UnCRtainTS. Different patches in rows. Per row: Cloudy image, computed cloud mask,
prediction, target image.
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imagery is considered. Due to time and computational con-
straints using Google Colab, no hyperparameter tuning was
conducted. However, this means mostly that the absolute
performance of the classifier will not be at its achievable
maximum, while the relative performance between cloud-
free and cloud-removed images is still assumed to be rep-
resentative. The best validation F1-score is achieved after
10 epochs with 0.711 (micro-averaging) / 0.471 (macro-
averaging). As the training loss keeps decreasing in the
following epochs, while the F1-scores drop again, there
might be overfitting of the model occurring, presumably
due to the reduced amount of training data with the same
model complexity as intended for the full data set.

5.2 Classification Performance

Testing the trained network on the test split with cloud-free
and cloud-removed images yields the confusion matrices
shown in Figure 5. Additionally, the network is tested with
the original cloudy data to obtain a comparable baseline,
i.e. expected performance on Out-of-Distribution samples.
The cloud-free matrix indicates adequate generalization be-
haviour for the classes Forest, Savannas, Croplands, Urban
and Water. Wetlands, Snow & Ice and Barren have too little
support to be evaluable. For Shrub Land and Grasslands,
the performance of the network is poor even on cloud-free
data, which could presumably be caused by the difference
in data distributions, namely significantly less samples in
the training split. For the cloud-removed images, the pre-
dictions seem to be biased towards the class ”Savannas”,
which is visualized in a difference of the confusion matrices
in Figure 6. For all classes except Grasslands, the fraction
of correctly labeled samples drops significantly. Only 8% of
urban patches are classified correctly, meaning a decrease
of 59%. However, the classes Water, Savannas, Croplands
and Grasslands are not affected substantially by using their
cloud-removed counterparts. The test of cloudy images
reveals a bias of the network towards the prediction ”Ur-
ban”. For all remaining classes except Water, classification
performance drops even more than for the cloud-removed
equivalents.

Next to predictions grouped by class, another consider-
ation is the difference in classification performance grouped
by cloud cover of the original cloudy image (before re-
moval). Figure 7 shows the F1-score, precision, recall and
average confidence (maximum probability) per 10% cloud
coverage. Note that the cloud-free predictions should not
be impacted by the grouping, therefore there should not be
considered to be a trend (as no cloudy images have been
used). It is apparent how cloudy images worsen the per-
formance with increasing cloud cover. In the case of cloud
cover > 90%, only a fraction of images can be classified
correctly. Interestingly, the confidence of the model does not
seem to suffer and even increases with higher cloud cover,
indicating overconfident mispredictions as analysed in [13].
The cloud-removed images, on the other side, demonstrate
a middle ground between cloud-free and cloudy perfor-
mance. While the precision does not decrease much, the
recall is deteriorating with increasing cloud cover (before
removal), but still significantly better than the cloudy com-
parison. Interestingly, the confidence in predictions remains

high, but levels off slightly below cloud-free and cloudy
baselines, indicating less confident predictions.

Grouping the presented classification performance met-
rics by their SSIM score on the test set (as calculated during
cloud removal inference), we can examine correlations be-
tween numerical quality of the reconstruction (in terms of
SSIM) and downstream performance. The results are shown
in Figure 8. Other than expected, a higher reconstruction
score does not result in overall better classification per-
formance. While the precision increases, recall even drops
slightly, making the F1-score mostly constant across SSIM
scores. The network becomes slightly more confident with
images that were reconstructed better according to SSIM.

5.3 Separability Study

The previous results have demonstrated a noticeable differ-
ence in classification performance between cloud-free and
cloud-removed data. Therefore, it is not expected that the
distribution of network predictions will be congruent, which
would result in no performance difference. However, some
insights can be gained from comparing the distributions of
different Out-of-Distribution metrics as presented in Section
4. The distributions are visualized in Figure 9. In the max-
imum probability, the cloudy predictions seem to be more
frequently represented in the higher confidences, which is
in line with the confidence analysis before, confirming the
finding of overconfident mispredictions on cloudy images.
The high cloud-free prediction confidences are similar to the
cloud-removed patches, while in the middle range (approx.
0.7-0.95), more cloud-removed samples are located. Again,
this is in line with the observation that the confidence is in-
deed lower than on the cloud-free test set, which is advanta-
geous considering the associated dip in performance. Here,
a good separability of distributions might be appropriate
given the differing predictive power on the cloud-removed
set. A similar image can be drawn from the cross entropy
distributions, as the cross entropy in the output probability
vector is strongly correlated with the confidence (e.g. a
perfect prediction has cross-entropy 0). It is observable that
the cloud-free predictions have cross-entropies close to 0 by
a multiplicative factor (hence the logarithmic scale in the
graph), while cloud-removed patches are more frequent in
higher entropies, again signaling uncertainty.

The precision, i.e. sum of exponential logits, only dis-
plays major differences in the small range [0− 50], in which
the cloudy patches are predominant, followed by cloud-free
and cloud-removed samples.

Lastly, the logit-sum is a metric that is applied before
obtaining actual probabilities, indicating the raw output of
the neural network. In this case, it can be seen that the
distributions of cloud-free and cloud-removed images are
in fact very similar, and the distribution of cloudy images is
noticeably different. As this metric considers the raw output
before converting to probabilities, it shows that the model
is not behaving significantly differently on cloud-removed
data, speaking in favor of a proximity of distributions. The
results in 2 confirm the qualitative findings for the most
part. The best separability between cloud-free and cloud-
removed images can be achieved with maximum proba-
bility, followed by precision. Logit-sum and Cross-Entropy



7

Fo
re

st

Sh
ru

b 
La

nd

Sa
va

nn
as

Gr
as

sla
nd

s

W
et

la
nd

s

Cr
op

la
nd

s

Ur
ba

n

Sn
ow

 &
 Ic

e

Ba
rre

n

W
at

er

Predicted label

Forest (n:899)

Shrub Land (n:212)

Savannas (n:415)

Grasslands (n:878)

Wetlands (n:1)

Croplands (n:907)

Urban (n:475)

Snow & Ice (n:0)

Barren (n:2)

Water (n:193)

Tr
ue

 la
be

l
0.79 0 0.18 0 0.02 0 0 0 0 0

0 0 0.210.45 0 0.34 0 0 0 0

0.05 0 0.680.07 0 0.120.07 0 0 0

0.05 0 0.450.12 0 0.38 0 0 0 0

0 0 0 0 1.00 0 0 0 0 0

0 0 0.240.11 0 0.610.03 0 0 0

0.01 0 0.06 0 0 0.250.67 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.00

0 0 0 0 0 0 0 0 0 0.98

Confusion matrix for cloud-free data

Fo
re

st

Sh
ru

b 
La

nd

Sa
va

nn
as

Gr
as

sla
nd

s

W
et

la
nd

s

Cr
op

la
nd

s

Ur
ba

n

Sn
ow

 &
 Ic

e

Ba
rre

n

W
at

er

Predicted label

0.27 0 0.64 0.08 0 0 0 0 0 0

0 0 0.86 0.04 0 0.08 0 0 0 0

0.17 0 0.60 0.13 0 0.11 0 0 0 0

0.09 0 0.59 0.26 0 0.05 0 0 0 0

0 0 0 0 1.00 0 0 0 0 0

0.02 0 0.20 0.28 0 0.51 0 0 0 0

0.05 0 0.34 0.02 0 0.51 0.08 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0.50 0 0 0 0 0 0 0.50

0.02 0 0.03 0 0 0 0 0 0 0.96

Confusion matrix for cloud-removed data

Fo
re

st

Sh
ru

b 
La

nd

Sa
va

nn
as

Gr
as

sla
nd

s

W
et

la
nd

s

Cr
op

la
nd

s

Ur
ba

n

Sn
ow

 &
 Ic

e

Ba
rre

n

W
at

er

Predicted label

0.19 0 0.10 0.01 0 0.02 0.65 0 0 0.01

0 0 0.06 0.50 0 0.44 0 0 0 0

0.02 0 0.05 0.06 0 0.25 0.60 0 0 0.01

0.05 0 0.21 0.14 0 0.38 0.21 0 0 0

0 0 0 0 0 0 0 0 0 1.00

0.02 0 0.02 0.03 0 0.24 0.61 0 0 0.09

0 0 0 0.03 0 0.16 0.63 0 0 0.17

0 0 0 0 0 0 0 0 0 0

0 0 0 1.00 0 0 0 0 0 0

0 0 0 0 0 0 0.02 0 0 0.98

Confusion matrix for cloudy data

Fig. 5: Confusion matrices of test data in cloud-free, cloud-removed and cloudy splits.
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can be worse discriminated than taking random guesses
(corresponding to 0.5), indicating that the distributions are
comparably close.

5.4 Input Feature Attribution via Grad-CAM

The trained classifier is used with the input feature at-
tribution mechanism Grad-CAM to obtain saliency maps
of the model’s attention in the input for a certain output
class. Analysing the outputs of Grad-CAM, in the following,
common misperceptions, confusions and reoccurring pat-
terns are described. For each example, the Figures show the
cloudy, cloud-free and cloud-removed image, as well as the
saliency map of the cloud-free image for the correct target

TABLE 2: Separability study: ROC/PR AUC for cloudy and
cloud-removed data, all compared to cloud-free distribution

Method Clear vs. Cloud-removed Clear vs. Cloudy
PR ROC PR AUC

Max.
prob.

0.642 0.609 0.597 0.564

Cross-
Entropy

0.425 0.372 0.381 0.290

Precision 0.584 0.527 0.583 0.595
Logit-sum 0.464 0.430 0.383 0.329

class At
k and the saliency maps of the cloud-removed patch

for the predicted (false) and true output class, A
′f
k and A

′t
k .

Figure 10 demonstrates one common misperception
using the cloud-removed data. Examining the activation
heatmap for the predicted class on the cloud-removed image
(e) shows that mostly the areas of previous cloud cover are
considered in the prediction. With respect to the true class,
the model only considers the bottom edge, which is not
sufficient for predicting the patch correctly as such.

In Figure 11, another common observation is demon-
strated. Even though the cloud cover, is not thick nor fully-
covering (84% according to binary cloud mask), the cloud-
removed image gets blurred in most regions, changing
the prediction to croplands. This especially impacts urban
scenes, as high-frequency details are not sufficiently trans-
ferred to the cloud-removed image.

The consequence of a certain in-painting pattern is
shown in Figure 12. The forest is almost completely covered
by clouds, removing the clouds introduces a landscape that
gets mistakenly predicted as grasslands. Similar to this,
Figure 13 shows a mixed scene, in which the mode of pixel-
wise classes corresponds to croplands. Due to the imperfect
transfer of high-frequency details during cloud-removal, the
cloud-removed image gets predicted (correctly) as crop-
lands, but only due to the structure of the in-painted urban
area (note the attention on the previously urban area to
predict croplands in (e)), not due to the actual croplands
around the urban parts.
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Fig. 7: Classification performance and average confidence, grouped by cloud coverage. Top Left: F1-score. Top Right:
Precision. Bottom Left: Recall. Bottom Right: Average Confidence
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Fig. 8: Classification performance per SSIM score in cloud
removal.

6 DISCUSSION

The aforementioned results pose the answer to the initially
asked research question, which will be discussed in the
following. First, it is reasonable to assume that the quality of
the cloud-removed images cannot be significantly improved
by any other method at this time, as the obtained metric re-
sults equal the results of Ebel et al. [11], who show that their
approach UnCRtainTS beats other state-of-the-art methods
on a variety of metrics. Having confirmed the quality of
the cloud-removed data, the training of the classifier on the
cloud-free training set is remains limited due to the project’s
time and available computational constraints. However, as
we are interested in a comparative performance result, this
circumstance is acknowledged and accepted. With more hy-
perparameter tuning and other model architectures, better
results will be possible to obtain almost certainly.

One of the first observations is the performance decrease
in correctly labeled samples. Overall, the classes ”Forest”
and ”Urban”, suffer the most, while ”Savannas” and ”Crop-
lands” can keep or even improve performance. This leads
to the assumption that the cloud-removal process induces a
bias towards those classes, which generally tend to comprise
less high-frequency spatial features, such as trees, houses,
streets etc. Another important fact is the imbalance of some
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Fig. 10: Cloud-removed false prediction: Savannas (true) vs.
Grasslands (pred)

(a) Cloudy (b) Cloud-free (c) At
k

(d) Cloud-removed (e) A
′f
k (f) A

′t
k

Fig. 11: Cloud-removed false prediction: Urban (true) vs.
Croplands (pred)
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Fig. 13: Correct prediction: Croplands

classes, which are underrepresented in the training and test
set and therefore poorly classified. For the sake of this study,
those classes are simply ignored.

By grouping the performance per cloud cover, we could
show that higher cloud cover before removal worsens the
performance in the downstream task. This is in line with
the bias assumption, which is stronger fulfilled, the more
cloudy areas have to be filled in. Even though the perfor-
mance does not drop as significantly as for cloudy images,
it is not en par with cloud-free counterparts. Interestingly,
this performance gap is visible in the confidence of the
network, whose distributions for cloud-removed and cloud-
free patches differ in terms of entropy and confidence score.
This is advantageous, as the model expresses its uncertainty,
rather than confidently mispredicting images, seen in the
case of cloudy samples. Trying to distinguish distributions
according to the raw model output (logit-sum) is harder,
indicating that the style of in-painting is close to the cloud-
free data (even though biased to other classes, as seen

before). The model is therefore only less confident, but not
confused by the generated data.

Lastly, the qualitative analysis reveals blurring of high-
frequency details (e.g. in urban and forest scenes), leading
to high activations in different classes than the true label.
Unfortunately, the model seems to make use of the gener-
ated parts of the patch to output a prediction, which can be
different in style than the rest of the patch.

7 CONCLUSION

In conclusion, the analysis shows that using cloud-removed
data is performing better than using cloudy images on a
cloud-free trained model. However, by analysing per-class
performance, we demonstrate a certain bias in the cloud-
removed images, leading to network preference of certain
classes. Therefore, we conclude that the introduced bias can
affect downstream tasks negatively and should be handled
with care. One of the main issues is performance on patches
that rely of high-frequency spatial patterns, such as urban
scenes. Moreover, unusual events or small hidden objects
(e.g. wildfires, ships), occluded by clouds will not be in-
painted, therefore this method is generally not applicable
to downstream tasks specializing on those events. In or-
der to use cloud-removed images in a downstream task,
further analysis of the cloud-removed images is necessary.
For example, a metric to favor strong gradients or high
spatial frequencies would allow the tuning of cloud-removal
models to keep those details instead of blurring in-painted
areas.
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