
1

Atomic Aggregation on 3D Gaussian Splatting
Fan Chen, Keyi Zhang, Xin Peng

Abstract—Differential rendering has surfaced as a promising technique within the domain of visual computing applications, involving
the training of a model through gradient descent from 2D images to represent a 3D scene. Recent research, exemplified by 3D
Gaussian Splatting [1], integrates differential rasterization employing Gaussian primitives. This approach demonstrates superior
rendering quality while concurrently upholding a high rendering speed. Despite these advancements, it is noteworthy that training such
a model remains a time-consuming task, even with the utilization of robust GPUs. In the context of this study, we have identified a
notable bottleneck associated with the substantial volume of atomic operations in gradient computation. These atomic operations
overwhelm the atomic units within the L2 subpartitions, leading to long stalls. To ameliorate this issue, our approach leverages two key
observations: (1) all active threads within the same warp collectively update the same memory location, and (2) only select threads in a
warp initiate atomic updates. Our proposed methodology employs a warp-level primitive with low overhead to facilitate warp-level
reduction, harnessing the inherent locality in intra-warp atomic updates. The experimental showcases substantial speed
enhancements with an average improvement of 3.04× (and a peak improvement of 5.2×) for gradient computation. Furthermore, an
average speedup of 1.58× (and a maximum speedup of 2.05×) is observed for the overall application.

✦

1 #define FULL_MASK 0xffffffff
2 for (int offset = 16; offset > 0; offset /= 2)
3 val += __shfl_down_sync(FULL_MASK, val, offset);

Fig. 1: Typical implementation of reduction. [2]
1 INTRODUCTION

Differential rendering has emerged as a pivotal
paradigm within the realm of computer graphics and vi-
sual computing. This innovative technique involves the
computation of gradients with respect to scene parameters,
enabling the generation of realistic images by efficiently
capturing variations in lighting, geometry, and material
properties. By differentiating through the entire rendering
process, from scene representation to pixel colors, differen-
tial rendering offers a powerful framework for tasks such
as image synthesis, novel view synthesis, and 3D scene
reconstruction.

For example, recent advancements in Neural Radiance
Field (NeRF) [3] technology have demonstrated significant
promise in novel view synthesis. NeRF achieves this by
optimizing deep fully-connected neural networks that take
5D coordinates as input, subsequently producing volume
density and view-dependent RGB color. Despite the com-
mendable rendering quality achieved by NeRF, its drawback
lies in prolonged training and inference times, rendering is
impractical for real-time applications. State-of-the-art tech-
niques such as instant-ngp [4] have addressed this concern
by leveraging a hash-grid data structure, resulting in re-
markably accelerated convergence times. Another notable
approach, termed 3D Gaussian Splatting [1], employs dif-
ferential rasterization utilizing Gaussian primitives, demon-
strating superior rendering quality while maintaining com-
parable convergence speeds to instant-ngp.

Rendering scenes with 3D Gaussian Splatting (3DGS)
[1], can achieve high-speed performance through a raster-
based rendering pipeline. However, it is noteworthy that
the training of these models remains a computationally

demanding process, particularly when leveraging powerful
GPU architectures. In this work, we conduct an detailed
performance analysis of the 3DGS application, revealing
that a substantial bottleneck arises from the considerable
volume of atomic updates during the backward pass. Specif-
ically, our investigation discloses that the backward pass
constitutes an average of 46.95% (with peaks reaching up
to 59.20%) of the overall training time on a RTX 4090 GPU.

Within the gradient computation phase of 3DGS, indi-
vidual threads are linked to specific pixels. Maintaining
correctness requires these updates to occur atomically, given
the potential for multiple threads to simultaneously modify
the same set of parameters. However, as each thread is
responsible for updating multiple parameters, this approach
results in a significant proliferation of atomic updates. Con-
sequently, this surge in atomic updates precipitates intense
contention at the atomic units within the L2 memory sub-
partition, leading to extended stalls in the GPU streaming
multiprocessors (SM).

The primary objective of our work is to enhance the
efficiency of the training pipeline for 3DGS by consolidating
atomic instructions within the backward pass. Two key
observations guide our pursuit of this objective: (1) Threads
within the same warp exclusively update identical memory
locations. (2) Atomic updates are solely performed by a
subset of threads within a warp: The number of threads
engaging in gradient updates at any given time varies due
to certain threads becoming inactive as a consequence of
failed condition checks in the code.

In this work, we present a software-based strategy aimed
at speeding up the training pipeline within 3DGS applica-
tion. Our approach hinges on two principal concepts: (1)
Exploiting intra-warp locality in atomic updates (Observa-
tion 1), we conduct warp-level reduction directly at the core
by utilizing registers. (2) Aligned with Observation 2, we
exclude warps that do not initiate any atomic updates. The
software approach we propose leverages established warp-
level primitives, such as __shfl_down_sync, to effectuate

2

warp-level reduction at each SM sub-core.
We evaluate our software-based approach on six differ-

ent scenes. We demonstrate a speed up of 3.04x on average
(and a peak improvement of 5.2×) for gradient computation
and an average speed up of 1.58x (and a maximum speedup
of 2.05×) on the overall 3DGS application on a real NVIDIA
RTX 4090 GPU. Our contributions are summarized as fol-
low:

• We conduct an exhaustive performance analysis on
the training pipeline of 3DGS and discern atomic
updates as a pivotal bottleneck.

• We introduce a software approach that uses warp-
level reduction to reduce the number of atomic up-
dates.

• We evaluate our approach on 3DGS application and
demonstrate significant speed up.

2 RELATED WORK

2.1 Atomic Processing in GPU
In GPU processing, atomic updates are typically associated
with individual threads, where each thread is responsible
for updating specific data or memory locations. To ensure
correctness in a parallel computing environment, atomic
operations are employed when multiple threads might at-
tempt to modify the same memory location simultaneously.
In the GPU architecture, every Streaming Multiprocessor
(SM) comprises multiple sub-cores, each sends the dispatch
of local and global atomic memory requests to the Memory
I/O Units (MIO). These requests are subsequently routed
through the interconnect to the memory subpartition and
processed near L2 cache.

2.2 Warp Reduction
Warp reduction is a parallel computing technique com-
monly used in GPU programming to aggregate and com-
bine data across threads within a warp. In the context
of differentiable rendering or similar applications, it is
often employed to reduce the number of atomic up-
dates and enhance computational efficiency. Fig.1 shows
how warp reduction is implemented using primitive
__shfl_down_sync. A warp comprises 32 lanes, with
each thread occupying one lane. For a thread at lane X
in the warp, __shfl_down_sync(MASK, val, offset)
gets the value of the val variable from the thread at
lane X+offset of the same warp. The data exchange is
performed between registers, and more efficient than going
through shared memory, which requires a load, a store and
an extra register to hold the address [2]. The thread at lane 0
will possess a val value equal to the sum of the val values
across all 32 threads within the warp. It is important to note
that for this process to execute accurately, both threads at
lane X and at lane X+offset must be marked as active in
the MASK. Traditional warp reduction employs a full mask,
requiring the participation of all threads within the warp.

3 MOTIVATION

3.1 Atomic Reduction Bottleneck
In this section, an in-depth performance analysis of 3DGS
application is conducted. The profiling of the training

Fig. 2: The amount of time spending on backward pass using
4090 (left) and 3060 (right)

1: function GRADCOMPUTATION(prims per thread)
2: tid← thread idx ▷ Thread corr. to pixel
3: for p : primitives[tid] do ▷ Iterate
4: if COND1 then
5: continue; ▷ thread doesn’t participate
6: end if
7: ...
8: if COND2 then
9: continue; ▷ thread doesn’t participate

10: end if
11: ... ▷ Gradient computation is done here
12: ATOMICADD(p.grad x1, gradtx1)
13: ATOMICADD(p.grad x2, gradtx2)
14: ATOMICADD(p.grad x3, gradtx3)
15: end for
16: end function

Fig. 3: Outline of the gradient computation step

pipeline is facilitated using Nsight System [5]. Our scrutiny
reveals that the backward pass, specifically in the gradi-
ent computation step, constitutes the most time-consuming
aspect, as illustrated in Fig. 2. Several key observations
emerge from our analysis. Firstly, on average 47.0% (with
a maximum of 59.2%) of the total execution time is allocated
to gradient computation, establishing it as a significant bot-
tleneck within the 3DGS application. Secondly, we discern
that the time required for gradient computation escalates
with scene size and complexity. In contrast, the forward
pass and loss computation exhibit independence from scene
complexity. Consequently, gradient computation emerges as
a more pronounced bottleneck in scenarios characterized by
increased scene intricacy.

The input to the gradient computation kernel consists of
a per-pixel list of primitives, where each list enumerates the
IDs of primitives influencing the color of the corresponding
pixel. The gradient computation within the backward step
of 3DGS is illustrated in Fig.3. Each thread, representing
one per pixel, iterates through its associated list of primi-
tives (line 2, 3). Various intermediate conditions, denoted as
cond1, cond2 in lines 5 and 9, determine the thread’s contri-
bution to the gradients of each primitive. Subsequently, the
thread computes the gradient contribution of the primitive’s
parameters (gradtx1, gradtx2, ...). Ultimately, each thread
executes an atomic add operation (depicted in lines 12-
14) to atomically accumulate its gradient contributions to
the parameters of the primitive. This atomic operation is

3

Fig. 4: Breakdown of warp stalls on 4090(left), 3060(right).

Fig. 5: The performance gain by replacing atomic add with
add 4090(left), 3060(right).

imperative due to the potential scenario where multiple
threads may concurrently update the parameters of the
same primitive.

Given that each thread is responsible for updating a
multitude of primitives, each of which encompasses nu-
merous learned parameters, a substantial volume of atomic
operations is generated. To assess the repercussions of this,
we analyze the cycles during the gradient computation
step when instructions experience stalls on two GPUs. The
breakdown of the number of cycles a warp is stalled per
instruction on the NVIDIA RTX 4090 and RTX 3060 GPUs is
illustrated in Fig.4, utilizing NVIDIA NSIGHT Compute [6].
Our analysis yields the following observation: LSU (Load-
Store Unit) stalls contribute to over 60% of all stalls on
average. These stalls within the LSU are attributed to the
considerable number of memory requests, primarily in the
form of atomic operations, directed to global memory from
each sub-core.

We conduct an empirical investigation to quantify the
impact of atomic updates on the overall performance of
the training pipeline. Specifically, we substitute all instances
of atomic_add in gradient computation with add, aiming
to discern the influence of these atomic updates on per-
formance dynamics. The outcomes of this experiment are
presented in Fig. 5. The elimination of atomic_add yields
a notable speedup of 17.16× on average (with a maximum of
34.21×). This compelling result underscores the substantial
role played by atomic updates as a significant bottleneck in
the context of gradient computation.

Fig. 6: Average number of active threads per warp partici-
pating in atomic updates.

3.2 Key Observation
We make the following observations from profiling atomic
operations in the gradient computation step.

3.2.1 Observation 1
Threads within a common warp concurrently update a
shared memory location. In the implementation of the gra-
dient computation kernel, each engaged thread (as depicted
in Fig. 3) is endowed with a global identifier. Importantly,
this global identifier remains consistent across all threads
within a given warp. Leveraging this shared global identi-
fier, each thread retrieves the primitive from a shared array
and subsequently performs atomic updates to modify the
parameters associated with that primitive.

3.2.2 Observation 2
A subset of threads within a warp exclusively engages in
atomic updates during any given instance. As evident from
Fig. 3, the gradient computation step incorporates dynamic
conditions (cond1, cond2, ...) that lead certain threads to
bypass the ongoing iteration of gradient updates. Conse-
quently, only a fraction of the entire warp’s threads initiate
atomic requests during a singular iteration.

To quantify the extent of thread participation in the
atomic reduction process for 3DGS, we examine the number
of threads typically involved in atomic reduction, as illus-
trated in Fig. 6. Our observations reveal notable variability
in the count of participating threads within a warp during a
single reduction cycle. Consequently, each warp contributes
a distinct level of traffic to the Load Store Unit, accentuating
the non-uniformity in warp-level engagement in the atomic
reduction operation.

In this work, our objective is to enhance the efficiency
of the training pipeline in the context of the 3D Gaussian
Splatting application. This enhancement specifically targets
the acceleration of atomic operations, which emerge as a
prominent bottleneck within the gradient computation step.
In the subsequent section, we expound upon the utilization
of these insights to formulate a software-based approach
aimed at mitigating the identified bottleneck.

4 PROPOSED METHOD

We present a software-based methodology designed to fa-
cilitate rapid atomic reduction in the context of 3D Gaussian

4

1: function GRADCOMPUTATION(prims per thread)
2: tid← thread idx ▷ Thread corr. to pixel
3: for p : primitives[tid] do ▷ Iterate
4: skip← false
5: if COND1 then
6: skip← true ▷ Mark inactive status
7: end if
8: ...
9: if COND2 then

10: skip← true ▷ Mark inactive status
11: end if
12: ...
13: if SKIP then
14: grad x1← 0
15: grad x2← 0
16: grad x3← 0
17: end if
18: REDUCTION(gradtx1)
19: REDUCTION(gradtx2)
20: REDUCTION(gradtx3)
21: if LANE ID == 0 then
22: ATOMICADD(p.grad x1, gradtx1)
23: ATOMICADD(p.grad x2, gradtx2)
24: ATOMICADD(p.grad x3, gradtx3)
25: end if
26: end for
27: end function

Fig. 7: Outline of the gradient computation step using re-
duction

Splatting (3DGS). This approach is intricately tailored to
address scenarios where the application generates substan-
tial atomic requests, particularly emphasizing the intricacy
arising from concurrent updates within the same warp
targeting a shared memory location.

The central concept of this methodology is to exploit
intra-warp locality to execute warp-level reduction prior
to initiating any atomic updates. Rather than dispatching
atomic updates individually, the proposed approach consol-
idates all updates and transmits a singular atomic update at
the conclusion, a strategic maneuver facilitated by Observa-
tion 1.

4.1 Design Challenges

The occurrence of atomic updates across all threads within a
warp is not guaranteed. As depicted in Fig. 3, certain threads
may abstain from participating in the parameter update
process due to unsuccessful conditions. Conventional warp-
level primitives, such as __shfl_down_sync(), necessi-
tate a mask input to specify participating threads, and it
mandates the simultaneous activity of both thread i and
thread (i + offset). Given the dynamic variation in the
number of active threads within a warp, implementing
an efficient warp-level reduction at the core level poses a
substantial challenge.

4.2 Detailed Design

The conventional reduction technique necessitates thread
convergence when __shfl_down_sync() is invoked. In
order to realize this synchronization, we introduce a vari-
able named skip. When a thread refrains from initiat-

1: function GRADCOMPUTATION(prims per thread)
2: tid← thread idx ▷ Thread corr. to pixel
3: for p : primitives[tid] do ▷ Iterate
4: skip← false
5: if COND1 then
6: skip← true ▷ Mark inactive status
7: end if
8: ...
9: if COND2 then

10: skip← true ▷ Mark inactive status
11: end if
12: ...
13: if SKIP then
14: grad x1← 0
15: grad x2← 0
16: grad x3← 0
17: end if
18: active count ←

popc(ballot sync(activemask(), !skip))
19: if !ACTIVE COUNT then
20: continue; ▷ warp doesn’t participate
21: end if
22: REDUCTION(gradtx1)
23: REDUCTION(gradtx2)
24: REDUCTION(gradtx3)
25: if LANE ID == 0 then
26: ATOMICADD(p.grad x1, gradtx1)
27: ATOMICADD(p.grad x2, gradtx2)
28: ATOMICADD(p.grad x3, gradtx3)
29: end if
30: end for
31: end function

Fig. 8: Outline of the gradient computation step using re-
duction and skip non-participating warps

ing an atomic update—rather than proceeding with diver-
gence—we set skip to true. Conversely, when a thread
initiates an atomic update, skip is assigned the value false.
Threads with skip set to true are then assigned a value of
0, compelling their participation in the reduction process.
Although this addition of 0 does not alter the final result, it
does impact performance by introducing superfluous com-
putation. Therefore, this approach attains optimal efficiency
when the majority of threads are active, minimizing the in-
troduction of redundant computations. The implementation
details are illustrated in Fig. 7.

In addition to employing reduction to minimize the
frequency of atomic requests, we utilize Observation 2 to
further enhance the efficiency of the gradient computation
step. Observation 2 elucidates that only a subset of threads
within a warp actively engages in atomic updates. Our
findings indicate the existence of certain warps that entirely
abstain from sending any atomic updates. In such cases,
we enforce thread convergence and execute reduction on
0, followed by an unnecessary atomic addition on 0. To
address this inefficiency, prior to commencing the reduc-
tion process, we leverage warp-level primitives such as
__ballot_sync() and __popc() to ascertain the number
of threads within the warp that will participate in updating
the primitive. If this count is determined to be 0, we expedite
the process by advancing to the next iteration of the loop.
The implementation details are illustrated in Fig. 8.

5

TABLE 1: CPU system configuration

CPU 3.6GHz Rocket-lake-like, OOO 4-wide dispatch window,
128-entry ROB; 32 entry LSQ
L1D + L1I Cache 2.3MB, 4 way LRU, 1 cycle; 64 Byte line;
MSHR size: 10; stride prefetcher
L2 Cache 32MB, 8 way LRU, 4 cycle; 64 Byte line;
MSHR size: 10; stride prefetcher
L3 Cache 36MB, 16 way LRU, 20 cycle; 64 Byte line;
MSHR size: 64; stride prefetcher
DRAM 2-channel; 16-bank; open-row policy, 4GB DDR4

TABLE 2: Workloads and datasets

Workloads Dataset Dataset nameidentifier

3DGS [1]

lego NerfSynthetic-Lego [3]
drums NerfSynthetic-Drums [3]

playroom DB COLMAP Playroom [7]
drjohnson DB COLMAP DR. Johnson [8]
truck Tanks and Temples-Truck [9]
train Tanks and Temples-Train [9]

Fig. 9: End-to-end and gradient computation speedup nor-
malized to baseline on 4090 and 3060.

5 EXPERIMENTAL RESULTS

We implement and assess our software-based approach on
real hardware setups with an Intel Core i9 13900KF CPU
(specifications shown in Table 1) and the NVIDIA RTX 4090
and RTX 3060 GPUs.

We assess the efficacy of our software approach utilizing
the datasets enumerated in Table 2.

Fig.9 illustrates the normalized speedup for the end-
to-end runtime, encompassing the forward pass, as well
as the normalized speedup specifically for the gradient
computation. The presented speedups in both graphs are
realized on real hardware and normalized in relation to the
baseline.

Fig.10 illustrates the average number of warp stalls per
instruction, along with its breakdown on both the RTX
4090 and RTX 3060. Additionally, Fig.11 presents the Load
Store Unit utilization for both the baseline and our proposed
approach on the RTX 4090 and RTX 3060. Furthermore,

Fig. 10: Breakdown of warp stalls during gradient computa-
tion on 4090 (left) and 3060 (right).

Fig. 11: Comparison of Load Store Unit (LSU) utilization
between the baseline and our proposed approach.

Table 3 shows the Peak Signal-to-Noise Ratio (PSNR) results
for six datasets, acquired during a 5-minute training period
on both the RTX 4090 and RTX 3060, employing both the
baseline and our approach.

Firstly, our software approach consistently surpasses the
baseline performance on both GPUs. Specifically, for the
gradient computation, we achieve an average speedup of
3.04× (with a maximum of 5.2×) on the RTX 4090 and
2.04× (with a maximum of 2.92×) on the RTX 3060. In the
broader context of the entire training pipeline, our approach
secures an average speedup of 1.58× on the RTX 4090
(with a maximum of 2.05×) and 1.37× (with a maximum
of 1.61×) on the RTX 3060.

Secondly, notable increases in speedup are observed,
particularly in scenes labeled playroom and drjohnson.
The datasets corresponding to these scenes are characterized

6

TABLE 3: PSNR on different approaches.

4090 3060
Baseline Ours Baseline Ours

lego 35.793 35.682 33.708 34.264
drums 29.990 30.124 28.856 29.034
playroom 32.843 34.975 29.988 30.195
drjohnson 29.549 32.160 28.025 29.076
truck 24.779 25.851 23.723 24.170
train 23.591 23.638 19.393 21.371

by their largescale and photorealistic nature, necessitating a
greater number of geometric primitives (specifically, Gaus-
sians for 3D Gaussian Splatting) for accurate scene repre-
sentation in comparison to smaller scenes. Consequently,
this results in a higher count of parameters requiring atomic
updates during gradient computation, thereby accentuating
the impact of the atomic bottleneck.

Thirdly, a notable reduction in warp stall cycles is evi-
dent, as depicted in Figure 10. On average, the warp stall
cycles decrease by a factor of 4.28× (with a maximum
reduction of 7.38×). The proportion of warp stalls attributed
to LSU stalls exhibits an average decrease of 3.6× (with a
maximum of 6.41×). In alignment with this observation, the
utilization of the Load Store Unit (LSU) is markedly higher
in our approach compared to the baseline. On average,
the LSU utilization using our approach is 8.05× higher
(with a maximum of 15.94×). This increase in utilization is
attributed to the reduction in the number of atomic updates
being sent to the LSU.

Fourthly, to underscore the impact of our approach on
rendering results, we conduct model training on datasets
for a duration of 300 seconds, employing both our approach
and the baseline. The outcomes are elucidated in Table 3.
We discern an average increase of 0.858 dB in Peak Signal-
to-Noise Ratio (PSNR), with a maximum improvement of
2.611 dB. Notably, more complex scenes exhibit a more
pronounced increase in rendering results, as they derive
greater benefits from our approach.

6 CONCLUSION

In this work, we present a software-based methodol-
ogy designed to expedite the execution of atomic re-
duction operations in the context of 3D Gaussian Splat-
ting. The fundamental concept underpinning our ap-
proach involves harnessing established primitives, such as
__shfl_down_sync(), to conduct warp-level reduction
prior to initiating atomic updates. Additionally, we strate-
gically omit the involvement of warps that refrain from par-
ticipating in parameter updates, guided by the observation
that a considerable proportion of warps abstains from trans-
mitting any atomic updates. Our findings substantiate that
our proposed approach effectively mitigates the bottleneck
associated with atomic processing in 3D Gaussian Splatting
applications.

REFERENCES

[1] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d
gaussian splatting for real-time radiance field rendering,” ACM
Transactions on Graphics, vol. 42, no. 4, July 2023. [Online]. Available:
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

[2] “Using cuda warp-level primitives,” https://developer.nvidia.
com/blog/using-cuda-warp-level-primitives/, accessed: 2023-11-
20.

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural radi-
ance fields for view synthesis,” Communications of the ACM, vol. 65,
no. 1, pp. 99–106, 2021.

[4] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Transactions on Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[5] “Nvidia nsight systems,” https://developer.nvidia.com/
nsight-systems.

[6] “Nvidia nsight compute,” https://developer.nvidia.com/
nsight-compute, accessed: 2023-11-20.

[7] J. Abramson, A. Ahuja, I. Barr, A. Brussee, F. Carnevale, M. Cassin,
R. Chhaparia, S. Clark, B. Damoc, A. Dudzik et al., “Imitating
interactive intelligence,” arXiv preprint arXiv:2012.05672, 2020.

[8] S. Prakash, T. Leimkühler, S. Rodriguez, and G. Drettakis, “Hybrid
image-based rendering for free-view synthesis,” Proceedings of the
ACM on Computer Graphics and Interactive Techniques, vol. 4, no. 1,
pp. 1–20, 2021.

[9] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and
temples: Benchmarking large-scale scene reconstruction,” ACM
Transactions on Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

	Introduction
	Related Work
	Atomic Processing in GPU
	Warp Reduction

	Motivation
	Atomic Reduction Bottleneck
	Key Observation
	Observation 1
	Observation 2

	Proposed Method
	Design Challenges
	Detailed Design

	Experimental Results
	Conclusion
	References

