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Abstract—Although there are lots of reasearch studies working on image denoising, they mainly rely on adding synthetic Gaussian
noise for supervised training, which always fail in real-world settings. Besides, creating a real-world dataset for supervised training is
labour intensive and time-consuming. Thus, self-supervised image desnoising approach is becoming more popular these days. There
are 2 latest self-supervised denoising approaches - Local and Global Blind-Patch Network and Spatially Adaptive Self-Supervised
Learning for Real-World Image Denoising, which perform state-of-the-art performance on real-world sRGB photographs. In this paper,
we investigated pixel-wise noise correlation to regenerate the findings in the previous papers. Besides, we reworked code provided
SSID into a well-design library to allow easy switching of BNN and LAN models. Apart from that, we performed additional ablation
studies to identify model significance and interpretability, as well as replaced model components with other state-of-the-art parts to
explore model interchangeability.

Index Terms—Image Denoising, Self-Supervised Learning, Noise Correlation
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1 INTRODUCTION

IMAGE denoising is one of the many tasks in the Image
Signal Processing Pipeline that removes noise while

retaining visual details of an image. Due to its importance
and widespread application, it has been a fundamental
research area in Computer Vision. For example, when
capturing astrophotographic images, low light together
with long exposure time unavoidably introduces lots of
noise, which is not ideal.

Currently, numerous machine-learning-based denoising
algorithms have been proposed. Most of these methods
rely on additive white Gaussian noise to synthesize noisy
images from clean ones for supervised training. However,
this is not realistic in certain ways. First, real-world noise
comes from multiple sources, such as Gaussian-distributed
read noise, Poisson-distributed shot noise, and uniformly
distributed Quantization noise. Second, images shot under
different lighting and environments can have different
noises. While several attempts [1] [2] have later been
made to create real-world datasets, they are costly, time-
consuming, and labor-intensive.

To overcome the above-mentioned limitations, self-
supervised learning [3] [4] [5] is introduced to approach
image-denoising problems. While traditional supervised
techniques rely on noisy and clean image pairs for training,
self-supervised learning relaxes this requirement and uses
only the noisy image. The intuition behind this is to
leverage intrinsic data distributions and priors derived
directly from the noisy images.

In this project, we start by reproducing state-of-the-art self-
supervised image-denoising works and proceed to modify
their works for improvement. Although we fail to do better
than these works, our contributions can be summarized in
3-folds. First, we extend the investigation of pixel-wise noise
correlation as image priors from a size of 9x9 to 21x21.

Second, we reworked the code provided by SSID [5] into a
well-designed library for easy component switching. Third,
we explored model interchangeability by replacing model
components across research works.

2 RELATED WORK

Due to the absence of appropriate training data, self-
supervised image-denoising techniques have been intro-
duced in recent years. One of the fundamental techniques
in literature for self-supervised denoising is Blind-spot net-
work (BSN) [6], which learns the masked center pixel by
referring to its receptive field. This method exhibits the
capability to effectively eliminate pixel-wise independent
noise when trained on identical noisy images serving as
both input and target. Based on this technique, several
state-of-the-art self-supervised denoising models are being
introduced.

2.1 Self-Supervised Denoising for Real-World Images
via Asymmetric PD and Blind-Spot Network (APBSN)
Apart from BSN, Pixel Downsampling (PD) is also a good
technique to remove spatial correlation of real-world noise.
APBSN [3] proposes to integrate both PD and BSN by
using an Asymmetric Pixel-shuffle downsampling frame-
work. By using asymmetric PD stride factors for training
and inference, this avoids the problem of breaking spatial
correlation and aliasing artifacts during downsampling. In
addition to the asymmetric framework, the authors propose
PD refinement to minimize the loss of visual features during
inference.

2.2 Local and Global Blind-Patch Network (LGBPN)
While AP-BSN demonstrated promising results, using BSN
focuses on recovering center pixels based on all neighbors.
This is not ideal since neighborhood pixels are also highly
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(a) Model Architecture of LGBPN (b) Model Architecture of SSID

Fig. 1: A side-by-side comparison of the two recent works from CVPR 2023

correlated in noise. Following AP-BSN’s findings where
noise is most correlated in a 9x9 region, they replace the
BSN with a Blind Neighbourhood Network (BNN) by
masking additional pixels during the learning process.
In this way, they estimate the center pixel using farther
neighborhood pixels that are less correlated in noise. Their
works consist of two branches, local feature extraction,
and global feature extraction. Figure 1a shows the model
architecture of LG-BPN [4]. The major difference between
the branches is to capture information with different
receptive fields.

Although they manage to produce quality results, we notice
several issues with their work. First, there is a lack of
explanation as to why a receptive field of 21x21 is used in
the global branch. Second, there is a long inference time
due to high model complexity. In particular, the Dilated
Transformer Block in the global branch is expensive in
practice. Third, the separation between local and global is
not intuitive. The receptive fields between the two overlap
and it is hard to come up with a meaningful interpretation
of what information they are trying to capture.

2.3 Spatially Adaptive Self-Supervised Learning for
Real-World Image Denoising (SSID)

SSID [5] is a 3-stage training procedure consisting of a
Blind Neighborhood Network (BNN), a Locally Aware
Network (LAN), and a Denoising Network. Unlike LGBPN
which learns local and global features in two branches
simultaneously, this work splits features according to
characteristics and learns them at different stages. The
first stage uses a BNN to learn denoising in flat areas. The
second stage uses the results from the first stage for the
supervision of texture areas such as edges and texts. Finally,
the third stage balances the flat and texture features using
a spatially adaptive coefficient. As a result, this strikes a
perfect balance between the over-smoothing results of flat
regions given by BNN and the noisy results in texture areas
captured by LAN.

In SSID, we see a clear separation of features and the use of
a three-stage method in fusing the flat and texture features.
We found such techniques inspiring and would like to
extend their works.

3 PROPOSED METHOD

3.1 Motivation

Understanding features is critical to improving model
performance. As we would like to understand the role of
each component, we perform a variety of ablation studies
on top of the works of LG-BPN [4] and SSID [5]. Further,
we notice a trend of using BSNs or BNNs in self-supervised
image-denoising in recent years. Since they use different
BNN architectures, we would like to interchange them to
observe any differences. Ideally, we expect similar results
as they share the same purpose.

To support easy switching between components in the three-
stage network. we reworked the code provided by SSID into
a well-designed library to allow easy switching of BNN and
LAN models. For example, if we would like to switch to
another BNN, we can simply replace Line 1 in Figure 2 with
your custom BNN model.

Fig. 2: Sample call to our redesigned code.

3.2 Noise Correlation Analysis

In this section, we analyze the real-world noise correlation
between each center pixel and their neighborhood pixels
across all images to produce a correlation map. With a map
size of 21x21, we try to search for reasons why LGBPN de-
cided to use a receptive field of 21x21 for the global branch.
Specifically, we let X be the noise obtained by subtracting
the noisy image from the clean image, Xij then refers to the
noise at row i and column j. The noise correlation map can
be computed as follows:

rkl =
∑
i,j

r(Xi+k,j+l, Xi,j),

where k, l ∈ [−10, 10] × [−10, 10] to produce a correlation
map of size 21, and r is the pearson correlation coefficient:
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r(x, y) =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

In this context, the values for the data points (xi, yi) will be
the RGB values. This method only applies to SRGB images
but not RAW ones since we cannot compute the correlation
coefficient similarly without RGB noise values.

Finally, we average out the correlation values across all
images from the dataset to obtain the desired correlation
map.

3.3 Blind Neighbourhood Network (BNN)
The works LGBPN [4] and SSID [5] each feature a different
strategy for BNN despite having the same goal. We adopt
both strategies in our analysis and interchange them to
observe model behavior.

LGBPN [4] implements the BNN by masking out the values
in the center. This is done by multiplying a mask on top of
the convolution kernel KConv2D:

K = KConv2D ∗MaskCorr

Referring to figure 3, MaskCorr is the prior knowledge of
highly correlated noise locations obtained in Section 3.2 that
enables self-supervised learning. We are trying to predict
the yellow pixel in the center by using far neighbors colored
in blue. This avoids learning from the strongly correlated
neighbor pixels (in white) while extracting as much local
information as possible during training.

Fig. 3: Patch-Masked Convolution used by LGBPN

To further preserve high-frequency local details, especially
during inference, the authors introduce a kernel shift strat-
egy based on deformable convolution [7]. Given input and
output features x and y, we denote the position of the
feature at p as x(p) or y(p). The strategy shifts the kernels to
the center with the equation

y(p0) =
K∑

k=1

wk · x(p0 + pk + α ∗ (pk − p0)),

where α is some predefined offsets denoting the extent of
the kernel shift and K is the kernel sampling locations. In

other words, for each kernel pixel k, we shift it from position
p0 + pk + α ∗ (pk − p0) of the input feature to position p0 of
the output feature. Figure 4 illustrates the shifting procedure
during inference.

Fig. 4: Kernel Shift Strategy Illustrated

SSID [5], on the other hand, creates the Blind Neighborhood
Mask by shifting the kernel to exclude the center pixel at
each layer. By stacking k 3x3 shifted convolution layers, this
produces a (2k+1)× (2k+1) blind neighborhood. This dif-
fers from that of LGBPN [4] since they are not multiplying
the kernel by the noise correlation mask directly. Figure 5
demonstrates the shift at each layer.

Fig. 5: BNN used by SSID

3.4 Model Component Analysis
In this section, we present the list of ablation studies that we
had, the intuition, and what we are expecting to see from
each of them. These ablation studies can be separated into
three groups, LGBPN-based, SSID-based, and a mixture of
the two.

3.4.1 LGBPN-based Ablation Studies
The first study we did was to replace concatenation
fusion with average fusion when combining the local
and global branches (L-2). In the original LGBPN paper
[4], concatenation fusion was employed to combine the
local and global branches, primarily to facilitate the
subsequent convolution calculations. However, we decided
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to investigate an alternative fusion method, opting for
average fusion in our initial study. Our motivation for this
change stems from SSID [5] having a spatially adaptive
weight, but instead, we fix this weight to 0.5 since it is hard
to tell whether local or global features are more important
by their names. While concatenation fusion may not pose
significant computational demands, it introduces additional
parameters and intricacies to the model architecture.

The second approach involves substituting Dilated
Convolution Layers (DCL) with Dilated Transformer
Block (DTB) and reducing the number of DTBs from 6
to 3 (L-3). The idea is to investigate the capabilities of
DTB in capturing global interactions compared to DCL.
According to the authors, DTB is designed to avoid
information exchange between spatially adjacent pixels,
thereby satisfying the pixel-wise independent requirement
of the blindspots [4]. We would like to determine DCL’s
ability to extract local connectivity from images and assess
its necessity in the LGBPN model. The decision to assign
only 3 DTBs to each branch is rooted in the substantial
computational power required for each DTB. To ensure the
feasibility of training our model on limited GPU resources,
we had to limit the number of blocks to 3 blocks per branch.

The third one is to remove one of the branches from the
model, which is to train the LGBPN model with only the
local branch or the global branch (L-4, L-5). This deviation
from the original architecture was motivated by the obser-
vation that the terms ”local” and ”global” in LGBPN [4]
lack a clear demarcation, unlike the more distinct separation
of flat and texture features in SSID [5]. Since there are
overlapping receptive fields between the local and global
branches, we raise the concern of potential redundancy
in maintaining both branches. Thus, we trained the local
branch and global branch separately to understand what
each branch contributes individually and determine if their
collaboration is crucial for the LGBPN model structure.
Additionally, the image outputs from these two models
can assist us in defining the characteristics associated with
”local” and ”global” features as mentioned in the context of
the LGBPN model.

3.4.2 SSID-based Ablation Studies
For SSID, we propose one simple experiment by replacing
the loss function in the second-stage model LAN to su-
pervise using the noisy image instead of the output from
the BNN in Stage 1 (S-2). Mathematically, we replace the
equation:

LLAN = ||BNN(x)− y||1, with LLAN = ||x− y||1,

where x is the input noisy image, and y is the output of
LAN.

The authors propose to supervise LAN using the outputs
from BNN [5]. This is because BNN learns to recover the
flat areas, which provide some clean signal for LAN to
train with. By modifying the loss function to supervise the
noisy image, we are guiding the model to predict the center
pixel using highly correlated noisy pixels. If things go on

the right track, we should expect LAN to produce noisy
outputs instead of capturing texture areas as expected. This
also verifies the reason why we need BNNs in masking out
center neighborhoods.

3.4.3 Interchanging components from LGBPN and SSID
Further, we attempt to interchange the BNN component of
LGBPN and SSID (L-1, S-1). That is, for LGBPN, we replace
its local branch by SSID’s BNN, and for SSID, we replace its
Stage 1 BNN learning process with LGBPN’s local branch.
As described in Section 3.3, both BNN components share the
same objective even though they feature different strategies.
If the results produced after interchanging the components
are similar, we can divide the research work into parts and
focus on improving individual components. For example,
building a better BNN will eventually improve the results
for all the three stages, and hence improving denoising
results.

4 EXPERIMENTS

4.1 Experimental Settings
To obtain a comparative analysis between methods, we
follow previous works and work on SRGB images. For com-
parative analysis, we try to follow as many hyperparameters
from previous works, which include learning rate, number
of gradient steps, and loss functions.

4.1.1 Dataset
We trained and evaluated our method based on Smartphone
Image Denoising Dataset (SIDD) [1]. The authors created
this dataset by collecting real-world raw images from five
smartphone cameras and manually cleaned the images to
obtain the ground truth. We use the SIDD-Medium dataset,
with 320 images of dimension 4032x3024 for training, 1280
256x256 patches for validation, and 1280 256x256 patches
for testing. During training, we perform simple data aug-
mentation procedures such as random crop to size 256x256,
random flip, and transpose to increase model robustness.

4.1.2 Training Details
The noise correlation map is computed on Intel i9-13900K
CPU with all 24 cores enabled. As for the machine learning
models, they are trained on either NVIDIA GeForce RTX
4070, 4090, or RTX A4500 depending on the machine avail-
ability of UofT GPU clusters. For LGBPN-based methods,
we set the learning rate to 1e-4 and train all networks for
20 epochs with batch size 8. As for SSID-based methods, the
learning rate is set to 3e-4 with a cosine annealing scheduler
trained for 400k gradient steps in each stage. To evaluate
our results, peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) are used to evaluate the performance.

4.2 Experimental Results
4.2.1 Noise Correlation Analysis
We present the noise correlation map that we compute
across the SIDD dataset [1] in Figure 6. As to our expec-
tation, the region within a distance of 4 from the center
contains most correlated noise, which matches previous
analysis from APBSN [3]. We still see a minimum amount of
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noise outside this region but they are insignificant relative to
the center region. Surprisingly, we observe checker patterns
of noise correlation from outer regions. This might be due to
the wave-particle duality of the photons hitting the camera
sensor, or defects during demosaicking the RAW into SRGB
images when preparing the dataset.

Fig. 6: Noise Correlation Map (in log-scale)

Since we compute the correlation map by averaging out
results across all images from the dataset, we would also like
to investigate the noise correlation values of individual im-
ages. From this, we randomly selected 4 pixels and plotted
the distribution of the values for that pixel as in Figure 7. We
see that not all images have low correlation values in outer
regions. In particular, there are a few outliers having cor-
relation values of more than 0.2. We manually looked into
these images but failed to identify characteristics leading to
such results. However, we should keep in mind inconsistent
noise distributions even under the same camera. This could
happen when there are different lighting or camera settings
when shooting the images.

Fig. 7: Noise distribution for certain pixel

4.2.2 Model Component Analysis
We assess the effectiveness of each method in real-world
image denoising using the SSID validation dataset.

From Table 1, unfortunately, none of our approaches
manage to reach the PNSR and SSIM value from LGBPN
and SSID papers. This is somehow disappointing but
expected since they are all state-of-the-art works published

TABLE 1: Experiment Result

PSNR SSIM

LGBPN (Original) 37.280 0.9360
LGBPN (L-1) 33.546 0.8446
LGBPN (L-2) 37.138 0.8858
LGBPN (L-3) 36.798 0.8810
LGBPN (L-4) 36.038 0.8629
LGBPN (L-5) 36.212 0.8614

SSID (Original) 37.390 0.9340
SSID (S-1) 36.015 0.8732
SSID (S-2) 25.320 0.4047

in CVPR 2023 few months ago. Yet, most of our models
achieve PSNR values in the range of 36 to 37, indicating
commendable performance in minimizing pixel-wise
differences during denoising tasks. However, the variability
observed in SSIM values, ranging from 0.85 to 0.93,
underscores the differences among the models in their
ability to effectively recover and preserve structural
information within the denoised images. Besides, the
approach having the most similar result as the original
papers is the average fusion approach (L-2), but still its
result reveals that the concatenation fusion is better way for
LGBPN model to combine the output from local and global
branches.

Apart from that, by comparing the images generated from
the local-branch-only (L-4) and global-branch-only (L-5)
models in Figure 8, local-branch-only model can retain
more details of the image and the edges are sharper than
the global-branch-only model. However, when comparing
the overall PSNR and SSIM value, both models are having
a similar result but still cannot exceed the original LGBPN
model, so we cannot conclude which branch is redundant
for LGBPN model.

Both approaches of interchanging BNN component of
LGBPN and SSID (L-1, S-1) underperform in terms of PSNR
and SSIM. The result did not align with our interchangabil-
ity hypothesis and both BNN components are customized
for each model, so we are unable to divide the research work
into parts.

5 FUTURE WORKS

In the future, we plan to apply both self-supervised de-
noising models to RAW images instead of sRGB images so
as to denoise the images from the very beginning of the
image pipeline and investigate whether they can perform as
good as they are with sRGB images. This is because image
demosaicking adds a lot of errors to the RAW images. As
there are no RGB pixels in RAW images, we cannot compute
the pixel-wise noise correlation map in a similar fashion as
proposed in Section 3.2. To perform such analysis, we might
have to search for different priors and ways to estimate
noise correlation. Besides, as we observe underperforming
SSIM results in comparison to PSNR in Section 4.2.2. we
believe it would be a good idea to incorporate perceptual
loss [8] to the loss functions of both models. This forces
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Fig. 8: Visual quality comparison of all our approaches

the model to take into account human perception, such as
content and style discrepancies.

6 CONCLUSION

In this paper, we investigated pixel-wise noise correlation on
a size of 21x21 as image prior and concluded that noise are
mostly correlated within a 9x9 receptive field and there is
an unexpected fluctuation pattern of noise out side the 9x9
receptive field. Besides, we reworked code provided SSID
into a well-design library to allow easy switching of BNN
and LAN models. Apart from that, we performed additional
ablation studies to identify model significance and inter-
pretability, as well as replaced model components with other
state-of-the-art parts to explore model interchangeability.
While our results did not surpass those presented in the
two recent papers from the latest Conference on Computer
Vision and Pattern Recognition (CVPR), this outcome aligns
with our expectations considering the high standards set by
those contributions.
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