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Abstract—Neural Radiance Fields (NeRF) represent a groundbreaking approach in computer vision, enabling the synthesis of
high-fidelity 3D scenes from 2D images. This novel technique leverages neural networks to model volumetric scenes as a continuous
function, mapping 3D coordinates to RGB colors and volumetric density values. Editable neural rendering aims to enable the editing of
rendering results, such as user-defined object manipulation. This capability holds great application prospects in Augmented Reality
(AR), Virtual Reality (VR), 3D design, and architecture. For this project, our goal is to design a user-friendly pipeline for object-aware
neural rendering based on customized prompts. Using prompts, our model can segment objects through a zero-shot segmentation
approach, allowing it to learn and render the object and the scene separately. This separation makes object displacement, such as
moving or rotating within the scene, possible.
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1 INTRODUCTION

R Ecently, deep neural networks have been employed to
learn novel view synthesis from 2D images. Methods

like Neural Radiance Fields (NeRF) [1] represent scenes
with implicit fields of volume density and view-dependent
color and achieve photorealistic novel view synthesis re-
sults, where the scene and objects are static. Methods like
Object-NeRF [2] propose object-compositional neural radi-
ance fields that support the standalone object rendering.
Moreover, due to occlusions, unseen parts of the original
scene are usually degraded after editing. Nevertheless, this
approach demands a substantial number of manually an-
notated 2D segmentation masks and preprocessed datasets,
impacting the practicality and applicability of the method.
Combined with diffusion models, methods like Instruct-
NeRF2NeRF [3] allow for editing NeRF scenes with text
instructions, where the model uses Instruct-Pixel2Pixel [4]
to edit each image from the data sets as a whole without
separating the object of interest and the scene, which means
it only enables some color editing from diffusion model
outputs, and sometimes not stable as the images are edited
as a whole from one single prompt.

In this paper, we present a novel approach for object-
aware neural rendering, which can be edited according
to customized prompts. Our proposed pipeline leverages
prompts to enable the model to perform zero-shot segmen-
tation, allowing it to learn to edit and render objects and
scenes separately. Our experiment shows that the contami-
nated scene limitation that exists in InstructNeRF2NeRF [3]
is handled by local rendering on the masked object. The
occlusion from editable objects is inpainted through texture
synthesis methods, making the scene image set a smooth
background with reasonable geometry, and prepared for
further editing. This design facilitates object displacement,
such as moving and rotating within the scene, providing a
versatile and efficient solution for realistic and interactive
scene and object manipulation.

2 RELATED WORK

2.1 Neural Radiance Fields

Volume rendering allows the creation of a 2D projection of a
3D discretely sampled dataset. For a given camera position,
a volume rendering algorithm obtains the R,G,B, α (Red,
Green, Blue, and Alpha channel) for every voxel in the
space through which rays from the camera are cast. The
R,G,B, α values along the rays are then converted to an
RGB color and recorded in the corresponding pixel of the 2D
image. Neural Radiance Fields (NeRF) employ deep neural
networks for an implicit representation of fields of volume
density and view-dependent color and then accumulate the
values in volume rendering, achieving realistic novel view
synthesis results.

2.2 Object-Decomposite and Editable Rendering

Some early approaches such as [5] adopt traditional mod-
eling and rendering pipelines to edit or insert objects in
rendered scenes. Recently, some other methods have em-
ployed the NeRF model for 3D-aware image content ma-
nipulation. ControlNeRF [6] learns volumetric represen-
tations for multiple scenes simultaneously, and when a
novel scene is required the rendering network is fixed and
only the scene volume is optimized. In Object-NeRF [2], a
dual-branch architecture is normally employed. The scene
branch is trained to render the complete view of the scene
and generate the background for editable scene rendering.
Signed Distance Function (SDF) is also applied in neural
rendering models such as VolSDF [7], ObjectSDF [8], to
improve the rendering results of object surfaces. As the dif-
fusion models emerge, Instruct-NeRF2NeRF uses the diffu-
sion model Instruct-Pixel2Pixel [4] to enable prompt-driven
NeRF editing. Instruct-Pixel2Pixel introduces a method for
editing scenes using a combination of two large pre-trained
models—a language model (GPT-3) and a text-to-image
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Fig. 1. General View of Proposed Editable Rendering

model (Stable Diffusion), which is utilized by Instruct-
NeRF2NeRF to generate a replaced dataset of image editing
examples, enabling holistic editing on rendering results of
NeRF. Instruct-NeRF2NeRF maintains the geometry and
position of objects in scenes by training the field model on
raw images in the first stage. It only enables color editing
in the second stage by learning from edited images from
Instruct-Pixel2Pixel.

2.3 Image Inpainting
Several image inpainting methods have been developed,
with traditional approaches such as texture synthesis capa-
ble of generating new textures similar to the surrounding
areas to fill in missing regions. Deep learning neural tech-
niques, including the use of Generative Adversarial Net-
works (GAN) and Context encoders, can be trained to gen-
erate realistic image patches as well. Neural methods have
outperformed traditional methods, especially in semantic
understanding of the image. However, neural models can
be time-consuming to train and require a lot of data, thus
computationally expensive, which is a trade-off we must
consider when designing our model.

2.4 Segment anything model
The field of computer vision has witnessed significant ad-
vancements, particularly in the domain of image segmenta-
tion. Image segmentation, the task of partitioning an image
into meaningful and semantically coherent regions, plays a
pivotal role in numerous applications, ranging from medical
imaging to autonomous vehicles.

The ”Segment Anything” model [9] stands out as a
pioneering advancement, redefining the boundaries of se-
mantic understanding within images. It consists of three
components: an image encoder, a flexible prompt encoder,
and a fast mask decoder. The image encoder is implemented
using an MAE pre-trained vision transformer capable of
processing high-resolution input. In this context, the prompt
encoder is executed through CLIP (Contrastive Language-
Image Pre-Training), a neural network trained with diverse
(image, text) pairs. This system can be guided by natural

language instructions to forecast the most pertinent text
snippet associated with a given image [10]. Notably, it
achieves this without direct optimization for the task, akin to
the zero-shot capabilities demonstrated by GPT-2 and GPT-
3.

By leveraging this pre-trained large language model on
web-scale datasets, SAM demonstrates exceptional zero-
shot and few-shot generalization capabilities. Traditional
segmentation models often require extensive labeled data
for each object class they aim to identify. In contrast, the
”Segment Anything” model exhibits a remarkable capacity
to generalize to unseen classes with little to no explicit train-
ing, making it a powerful tool in scenarios where exhaustive
annotation is impractical.

This ability enables faster preprocessing for our train-
ing dataset, as any objects can be segmented out from
the background easily with a given prompt, making mask
generation easier than ever.

3 PROPOSED METHOD

3.1 SAM-based data preprocessing

Compared with traditional NeRF training, our model re-
quires additional processing on the training dataset. Our
framework consists of two branches: the scene branch,
which aims to encode the scene geometry and appear-
ance, rendering the surrounding background; and the object
branch, which renders the selected objects. The scene branch
also assists the object branch in locating regions where oc-
clusion occurs. Therefore, promptable SAM is used during
the initial data processing stage, generating multiple binary
masks as guidance.

Applying these input masks to the original image frame
separates the scene and objects. These segmented compo-
nents can then be fed into the scene branch and object
branch separately for downstream training tasks. This ap-
proach enhances the model’s ability to capture nuanced
scene features and object details during training, contribut-
ing to improved overall performance.
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Fig. 2. Example Pipeline

3.2 Texture Synthesis

We decided to use the traditional approach for inpainting
the part of images that were left empty because of the
segmentation of objects for several reasons. As illustrated
in the previous section, though neural methods can outper-
form traditional methods in restoring the original images,
they also come with the disadvantage of consuming huge
amounts of data and being computationally heavy during
training. Also, current popular pre-trained models employ-
ing GAN [11] are mostly trained on the Places [12] dataset,
which contains mainly real-world outdoor scenes, thus does
not yield satisfying results as the scene in our project is just
a single table within a relatively fixed indoor background. It
is true that a new model could be trained using a related
dataset of our scene, but that would add to the already
heavy computational task our pipeline has involved, for
which the current setting of time and resources of the project
does not approve. Another reason we prefer the traditional
approach is determined by the characteristics of our scene.
Basically, we need to inpaint the segmented part of the white
table from multiple directions of viewing, as well as a little
bit of overlap between objects and the background. The
task is not as complicated as inpainting outdoor scenes like
street views and places of interest with crowds of people.
This simplicity makes traditional methods more effective
compared to the costly neural models. We are using the
Rust-implemented version of fast texture synthesis( [13]).
The algorithm involved can be summarized as follow:

Algorithm 1: TextureSynthesis(Ia, OutputSize)

1 Is ←− Initialize(OutputSize);
2 Ga ←− BuildPyramid(Ia);
3 Gs ←− BuildPyramid(Is);
4 for Level L from lower to higher resolutions of Gs do
5 loop through all pixels(x,y) of Gs(L)
6 Gs(L)(x, y) =

FindBestNeighbourhood(Ga, Gs, L, x, y)

7 return ReconstructedPyramid(Gs)

Ia is the original image, and Pyramid contains images of dif-
ferent resolutions, where lower level pixels neighbourhoods
can also be used to represent higher resolution pixels dur-
ing FindBestNeighbourhood without sacrificing synthesis
qualities.

3.3 Two-Branch Fields

We implemented two branches of NeRFs Fj and Fs to learn
the colors and geometries of objects of interest and scenes
respectively. In our first stage, the two fields are trained
on separate data sets Dj and Ds, which have been pre-
processed by part 3.1 and part 3.2 and have not been edited
yet. As the occlusion part of the scene has been processed
by the inpainting module, Fs will learn updated colors as
well as geometries. Thus the fields output two sets of RGB
and opacity values along the ray, which are accumulated
when volume rendering, the object branch color and opacity
outputs can be denoted as:

Cj(rj) =
N∑
i=1

Tj,iαj,iFO(rj,i) (1)

Oj(rj) =
N∑
i=1

Tj,iαj,i (2)

Tj = exp(−
i−1∑
k=1

σj,kδk) (3)

where αj,i = 1 − exp(−σj, iδi), and δi is the sampling
distance between adjacent points along the ray. The scene
branch is rendered in similar formulas from the field, su-
pervised by inpainted ground truth. Considering the dif-
ferences of distribution between objects of interest and the
scene, i.e. the objects are usually closer to the observer,
while the scene covers a larger range of distances from the
viewpoint, we adopt different initial ray sample strategies
for object branch and scene branch respectively:

rj = SUL(ray, d) (4)
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rs = SU (ray, d) (5)

where SUL is a sampler that allocates the first half of the
samples uniformly and uses a linear disparity sampler in
the second half, and SU is a uniform sampler. ray denotes
the initialized ray bundles and d is density set to sample. In
this way, our model generates different point samples along
the ray when initialized to fit the features of the objects and
scenes.

3.4 Prompt-Driven Editing
In the second stage, like Instruct-NeRF2NeRF, the diffusion
model Instruct-Pixel2Pixel is loaded to edit rendered images
of the objects. The diffusion model receives three inputs:
the original image from the training set (segmented objects)
as the conditioning image CI , the text prompt for object
editing CT , and the noised rendered image zt. t repre-
sents the noise level and is chosen randomly from a fixed
range [tmin, tmax]. As in SDEdit [14], the noised image zt
is then passed to a U-Net [15], where following Instruct-
NeRF2NeRF the model only partially noises the images,
and while the edited image is from rendered results, the
diffusion model is conditioned on original images from
the data set. The outputs of the diffusion model replace
the training set after editing and are subsequently used to
supervise the object-branch NeRF. The above process is op-
erated iteratively during the training process, and over time
as images are used to update the NeRF and progressively re-
rendered and updated, outputs of object-branch NeRF begin
to converge on a globally consistent depiction of the edited
scene.

3.5 Loss Function
In the training process, the two branches are supervised
simultaneously. In both branches Learned Perceptual Im-
age Patch Similarity (LPIPS) [16] computes the similarity
between the activations of two image patches for some pre-
defined network, which has been shown to match human
perception well. So besides the color L1 loss, LPIP is em-
ployed to supervise the rendered images:

Lc =
∑

i∈Mobj

∥Cj(ri)−Cj,gt(ri)∥1+
∑
i∈I

∥Cj(ri)−Cj,gt(ri)∥1

(6)
Llpips = d(Ij , Ij,gt) + d(Is, Is,gt) (7)

L = Lc + Llpips (8)

When calculating the RGB loss of the object, the pixels of
the scene are masked out, while for LPIPS loss they are set
as zero (black). During the iterative editing stage, Cj,gt and
Ij,gt are replaced by the edited images such that the object-
branch field learns to render edited images.

3.6 Editable Rendering
Object-NeRF [8] uses bounding boxes to avoid ray sampling
in object spaces in the scene branch. However, in our model,
the recognition of objects is from customized prompts, such
that the 3D information of the objects like bounding boxes is
unavailable. Therefore, in the object-branch field, we learn
images where the background is masked as black. We obtain

mask information from its rendering results and mask out
the corresponding part of scene images during rendering.
This approach, however, fails to deal with the situation
in the scene occludes the objects, which is an important
limitation. With trained two fields, transition matrix T can
be applied to enable movement of the object (i.e. moving,
rotating) in the scene:

Crender =
∑

i∈Mobj

Cj(Tri) +
∑

i/∈Mobj

Cs(ri) (9)

4 EXPERIMENTAL RESULTS

4.1 Data
We trained and tested our method on three datasets directly
generated from three casual videos, named Tortoise-Desk,
Apple-Desk, and Sheep-Desk. In the NeRFStudio environ-
ment, the videos are firstly pre-processed by COLMAP [17]
to match camera poses and generate sparse point clouds.
With customized prompts, a prompt-driven Segment Any-
thing model receives the images as inputs to generate rele-
vant object masks. Due to the large computational costs in
the editing stage, the images are down-scaled into the size
of (270, 480).

4.2 Rendering Results
In Figure 4-6, we present the outcomes obtained from test
sets across three datasets, encompassing three distinct sce-
narios: no changes made to the images, editing on the object
of interest, and editing on both the object and the scene.
Due to the limit of computational resources, our model
only rendered and edited low-resolution images (270×480).
Figure 4 showcases the reconstruction capability of our
model, with noticeable jagged edges on the apple attributed
to the SAM model’s output masks exhibiting noisy edges
The segmentation results of the Sheep-Desk data set are
also not ideal and severely affect the performance of the
object branch field. The masks generated by SAM model are
sometimes not continuous, resulting in noises on the scene.
This result shows that without any manual process, zero-
shot segmentation models can hardly predict pixel-wisely
precise masks.

In Figure 6, an attempt to simultaneously edit the back-
ground scene and object is depicted. However, Instruct-
Pixel2Pixel is not tailored for whole image editing, causing
suboptimal results when transforming the scene into diverse
styles. For instance, when instructing the desk to transform
to grass, the desk itself turns green, but the grass maintains
a table-like structure with rounded edges. This limitation
is inherent in Instruct-Pixel2Pixel as it struggles to alter
background geometric structures.

Our model successfully avoids the contamination ob-
served in diffusion models affecting backgrounds, a com-
mon issue with the Instruct-NeRF2NeRF model. In Figure
7, instances of the desk and other background elements
turning orange are highlighted, resulting from the diffu-
sion model erroneously editing the entire image at certain
stages. Our approach, which involves rendering and editing
the object and scene separately, significantly mitigates the
likelihood of such contamination occurrences.
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Fig. 3. Raw NeRF

Fig. 4. No-Editing Results of Our Methods

Fig. 5. Edited Results of Our Methods, with prompt ”make the tortoise golden”

Fig. 6. Edited Results of Our Methods, with the prompt for the object ”make the sheep pink” and the prompt for scene ”turn the scene into a
grassland”

Fig. 7. Edited Results of Instruct-NeRF2NeRF, with the prompt for the object ”change the apple into an orange”

4.3 Quantative Results

Table 1-2 shows the quantitative results of comparisons
between the original baseline NeRF and our model. The
PSNRs or SSIM on objects denote the evaluation of only
masked parts of objects. However, considering some noisy
masks generated, the higher value in the object part repre-

sents over-fitting on incorrect masks (as the rendering re-
sults are evidently defective). Nevertheless, according to the
evaluation of the full scene, our method shows reasonable
compromises in performance when enabling object-aware
editing.
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Fig. 8. Edited Results of Instruct-NeRF2NeRF, with the prompt for the object ”change the apple into a skull”

TABLE 1
PSNRs on object/full scenes/db

Model Apple Turtoise Sheep

Raw NeRF (object) 25.87 27.67 27.66
IO2O (object) 25.87 25.86 25.86

Raw NeRF (full scene) 29.78 30.58 29.63
IO2O (full scene) 30.54 31.15 31.19

TABLE 2
SSIMs on object/full scenes

Model/ Apple Turtoise Sheep

Raw NeRF (object) 0.1211 0.0926 0.0506
IO2O (object) 0.1589 0.1148 0.0793

Raw NeRF (full scene) 0.9054 0.9129 0.9079
IO2O (full scene) 0.8521 0.8061 0.8298

5 CONCLUSION

5.1 Summary

In this paper, we propose a prompt-driven object-
aware editing NeRF model. We combine the features of
Object-Decompositional NeRFs and the work of Instruct-
NeRF2NeRF and avoid contaminants on scenes when ap-
plying the diffusion model, as well as enabling editing on
object positions such as rotating and moving.

5.2 Limitation and Future Work

The rendering results of our model are sometimes not ideal,
especially on the edges of objects. As mentioned before, the
performance of segmentation part significantly influences
the supervision of the two branches of fields. Our next work
will focus on automatic optimization of masks to filter out
noises of masks. Furthermore, as mentioned in Section 3,
our model can not handle the situation that the objects are
occlude by the scene.

Our model also has the defect of being unable to handle
symmetric objects. As shown in figure 8, Intruct-Pixel2Pixel
tends to edit every image of the apple into the front of a
skull, making geometry or color alignment impossible for
the NeRF model. One possible way to solve this is to model
the object in 3D meshes and apply another module to plan
for the structure of edited object.

For image inpainting, we observed that while
the algorithm generally performed well in texture
synthesis for the hollows left by objects on the table
and background, it struggled with handling shadows cast
by the original objects. The root cause of this issue lies in the
segmentation process, where only the objects themselves

were removed from the scene, leaving their shadows
behind. Consequently, when our algorithm seeks the
optimal neighborhood for inpainting, it may kept selecting
shadowed regions, resulting in a larger area of black pixels
than intended. A potential future work involves training a
neural GAN-based model using image data from similar
scenes. Such a model is anticipated to make more informed
decisions when encountering shadows compared to the
traditional methods we have proposed, albeit at a higher
computational cost.
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