Atomic Aggregation on 3D Gaussian Splatting

demonstrate significant speed up. 4090 3060
Baseline Ours Baseline | QOwurs
lego 35.793 35.682 33.708 34.264
drums 29,990 30.124 28.856 29.034
Related Work >layroom 32843 | 34975 | 29988 | 30.195
Atomic Processing in GPU: drjohnson 29.549 32.160 28.025 29.076
 Individual threads perform atomic updates on truck 24.779 25.851 23.723 24.170
specific data or memory locations to maintain train 23.591 23.638 19.393 21.371

Fan Chen, Xin Peng, Keyi Zhang

Master of Science in Applied Computing, University of Toronto

Key Contributions

Conducted an exhaustive performance analysis on
the training pipeline of 3DGS and discern atomic
updates as a pivotal bottleneck.

Introduced a software approach that uses warp-level
reduction to reduce the number of atomic updates.
Evaluated our approach on 3DGS application and

data integrity.

Ensures correct and conflict-free modifications
In a parallel computing environment where
multiple threads may simultaneously access the
same memory location.

Warp Reduction:

1
2
3

fdefine FULL_MASK Oxffffffff
for (int offszset = 1l6; offset > 0; offset /= 2)
val += _ shfl down_svync (FULL_MASE, wval, offset)

« Using the _ shfl down_sync primitive enables
fast and direct data exchange between thread
registers, which is more efficient than using
shared memory!4l. This method can be used to

Gradient Speedup Factor

31: end function

Motivation Method
3D Gaussian Splatting!!l achieves real-time 1: function GRADCOMPUTATION(prims_per_thread) * Introduce "skip to manage
rendering by leveraging GPU rasterization pipeline. 2: tid < thread_idz > Thread corr. to pixel threads that do not
However, the training of these models remains a 3 for p:primitives[tid] do > Iterate participate in atomic
computationally demanding process. By an in-depth 4: skip < false updates, ensuring all
performance analysis of 3DGS using Nvidia profiler!?], 2 i iz?ni ::E;‘ > Mark inactive status — threads can synchronize
we identified the atomic updates as a significant 7 end if;o during warp-level reduction
bottleneck at the gradient computation step in 3: _, by assigning inactive
backward pass. seformance Gain by Replacing Atamic Add Vit Add on RTX 4090 9: if COND2 then threads a value of O.
e Spenhg o B e TR 1 10: skip < true > Mark inactive status
" 11 end if
: | e e W ﬁ >, o e « Based on Observation (2),
J I I 14- grad_zl « 0 If no threads are active, the
i 0 R R SR N | 15: grad_z2 + 0 loop skips unnecessary
T T P 16: grad_z3 + 0 _J reduction and atomic
Goal: Enhance the training 17: end if addition operations,
efficiency by consolidating -l==_ == == == = - 18: actiwve_count <~] streamlining the process.
atomic instructions within e _popcg_ballot_Sync(_actiUemask(), Iskip)) .,
the backward pass. Key Observations: 19: if !ACT%VE_COUNT then r o
(1) Threads within the same 20: c?ntmue; > warp doesn’t participate —
e warp exclusively update o end if .
L identical memory locations. 22: REDUCTION(gradsxl) ~— « Based on Observation (1),
2 Atomic undates are 23: REDUCTION(grad;z2) . perform a warp-levgl
(2) P 24: REDUCTION(grad;z3) reduction to consolidate
solely performed by a 25: if LANE_ID == 0 then — gradient calculations into a
o o o W subset of threads within a 26: ATOMICADD(p.grad_z1, grad;x1) single value per gradient
" Active Threads Number warp. 27: ATOMICADD(p.grad_x2, grad:x2) component within the
28: ATOMICADD(p.grad_x3, grad:x3) L
29: end if warp, which is then
30: end for atomically added to the

global memory by a single
thread.

Experimental Results

 PSNR results for six datasets, acquired during a 5-minute training period on both the
RTX 4090 and RTX 3060, employing both the baseline and our approach.

» Left shows the normalized speedup specifically for the gradient computation using
Nvidia Nsight Computel®l. Right shows the normalized speedup for the end-to-end
runtime, including the forward pass using Nvidia Nsight System!?l.

Gradient Computation Speedup Normalized to Baseline

| .

4090
3060

5.20x%

2.69x

60

drjohnson playroom

Breakdown of Warp Stall Cycles

H LSU stall [
Other

End-to-end Speedup Normalized to Baseline

: =
: ©
: w
: X
_ :
03]
w
x
E N
: IN]
H []
: X
: N
H [{e]
: N
: x
_ :
~J
o]
x
: N
: ~
5 B
. x
End-to-end Speedup Factor
o o =] =] I = - I N
8 b 3 bl 8 & 3

2.06x%

lego

drjohnson playroom

The breakdown of the number of cycles a
warp Is stalled per instruction on the NVIDIA

accumulate results in a specific thread. RTX 4090 and 3060 GPUs. Left-top is the

result of baseline, left-bottom Is the result of

our approach.
 Below Is the load store unit utilization for both

the baseline and our proposed approach

50 A

Warp Stall Cycles

References 0-

[1] B. Kerbl, G. Kopanas, T. Leimk ‘uhler, and G. Drettakis, “3d
gaussian splatting for real-time radiance field rendering,” ACM 16 -
Transactions on Graphics, vol. 42, no. 4, July 2023. 14 -
[2] “Nvidia nsight systems,” https://developer.nvidia.com/

truck frain
scenes

drichnson playroom

lego drums

Breakdown of Warp Stall Cycles Comparison of Load Store Unit (LSU) Utilization 4090

B baseline B83.51

ours

7222
12 - 691

Bl LsU stall B7.68

Other 81.65

18.63

]
o
I

=
=]
I
=]
o
I

nsight-systems

[3] “Nvidia nsight compute,” https://developer.nvidia.com/
nsight-compute, accessed: 2023-11-20

[4] “Using cuda warp-level primitives,”
https://developer.nvidia.com/blog/using-cuda-warp-level-
primitives/, accessed: 2023-11-20.

LsU Utilization
=y
L]
i

Warp Stall Cycles

[
o

7] 14.58 15.06

lego drums

ﬁ 673 55 5.89
| B = |
fruck train drichnson playroom
Scenes

lego drums truck train drichnson playroom
Scenes

=]

