Atomic Aggregation on 3D Gaussian Splatting
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Key Contributions

Conducted an exhaustive performance analysis on
the training pipeline of 3DGS and discern atomic
updates as a pivotal bottleneck.

Introduced a software approach that uses warp-level
reduction to reduce the number of atomic updates.
Evaluated our approach on 3DGS application and

data integrity.

Ensures correct and conflict-free modifications
In a parallel computing environment where
multiple threads may simultaneously access the
same memory location.

Warp Reduction:

1
2
3

fdefine FULL_MASK Oxffffffff
for (int offszset = 1l6; offset > 0; offset /= 2)
val += _ shfl down_svync (FULL_MASE, wval, offset)

« Using the _ shfl down_sync primitive enables
fast and direct data exchange between thread
registers, which is more efficient than using
shared memory!4l. This method can be used to

Gradient Speedup Factor

31: end function

Motivation Method
3D Gaussian Splatting!!l achieves real-time 1: function GRADCOMPUTATION(prims_per_thread) * Introduce "skip to manage
rendering by leveraging GPU rasterization pipeline. 2: tid < thread_idz > Thread corr. to pixel threads that do not
However, the training of these models remains a 3 for p:primitives[tid] do > Iterate participate in atomic
computationally demanding process. By an in-depth 4: skip < false updates, ensuring all
performance analysis of 3DGS using Nvidia profiler!?], 2 i iz?ni ::E;‘ > Mark inactive status — threads can synchronize
we identified the atomic updates as a significant 7 end if;o during warp-level reduction
bottleneck at the gradient computation step in 3: _, by assigning inactive
backward pass. seformance Gain by Replacing Atamic Add Vit Add on RTX 4090 9: if COND2 then threads a value of O.
e Spenhg o B e TR 1 10: skip < true > Mark inactive status
" 11 end if
: | e e W ﬁ >, o e « Based on Observation (2),
J I I 14- grad_zl « 0 If no threads are active, the
i 0 R R SR N | 15: grad_z2 + 0 loop skips unnecessary
T T P 16: grad_z3 + 0 _J  reduction and atomic
Goal: Enhance the training 17: end if addition operations,
efficiency by consolidating -l==_ == == == = - 18: actiwve_count <~ ] streamlining the process.
atomic instructions within e _popcg_ballot_Sync(_actiUemask(), Iskip)) .,
the backward pass. Key Observations: 19: if !ACT%VE_COUNT then r o
(1) Threads within the same 20: c?ntmue; > warp doesn’t participate —
e warp exclusively update o end if .
L identical memory locations. 22: REDUCTION(gradsxl) ~— « Based on Observation (1),
2 Atomic undates are 23: REDUCTION(grad;z2) . perform a warp-levgl
(2) P 24: REDUCTION(grad;z3) reduction to consolidate
solely performed by a 25: if LANE_ID == 0 then — gradient calculations into a
o o o W subset of threads within a 26: ATOMICADD(p.grad_z1, grad;x1) single value per gradient
" Active Threads Number warp. 27: ATOMICADD(p.grad_x2, grad:x2) component within the
28: ATOMICADD(p.grad_x3, grad:x3) L
29: end if warp, which is then
30:  end for atomically added to the

global memory by a single
thread.

Experimental Results

 PSNR results for six datasets, acquired during a 5-minute training period on both the
RTX 4090 and RTX 3060, employing both the baseline and our approach.

» Left shows the normalized speedup specifically for the gradient computation using
Nvidia Nsight Computel®l. Right shows the normalized speedup for the end-to-end
runtime, including the forward pass using Nvidia Nsight System!?l.
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The breakdown of the number of cycles a
warp Is stalled per instruction on the NVIDIA

accumulate results in a specific thread. RTX 4090 and 3060 GPUs. Left-top is the

result of baseline, left-bottom Is the result of

our approach.
 Below Is the load store unit utilization for both

the baseline and our proposed approach
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