Self-Supervised Image Denoising with Noise Correlation Priors Cheuk Hei Yu (Hayden), Hok Yin Yu (Boris)

MSc in Applied Computing (MScAC), University of Toronto

Motivation

Imaging Denoising

- One of the many tasks in the Image Signal **Processing Pipeline**
- Removes noise while retaining visual details of an image

New Techniques

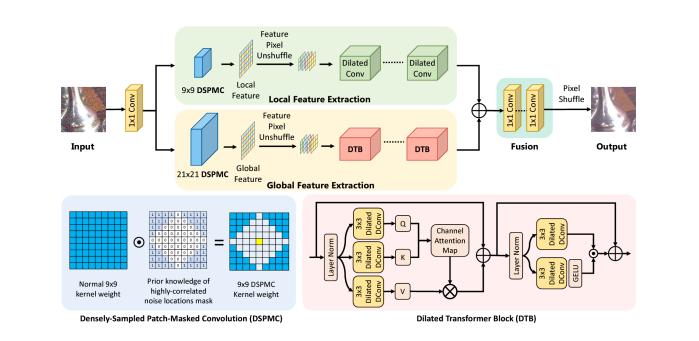
Dataset: Smartphone Image Denoising Dataset (SIDD) [1]

Major Contributions

- Investigate pixel-wise noise correlation on a size of 21x21 as image prior
- Rework code provided by SSID into a well-designed library to allow easy switching of **BNN and LAN models**

```
1 model bnn = SSID BNN(args.bnn cfg path)
2 model_lan = SSID_LAN(args.lan_cfg_path, model_bnn)
3 model_unet = SSID_UNet(args.unet_cfg_path, model_bnn, model_lan)
4 model unet.train()
```

Perform additional ablation studies to identify model significance and interpretability \bullet


Why Self-Supervised Learning?

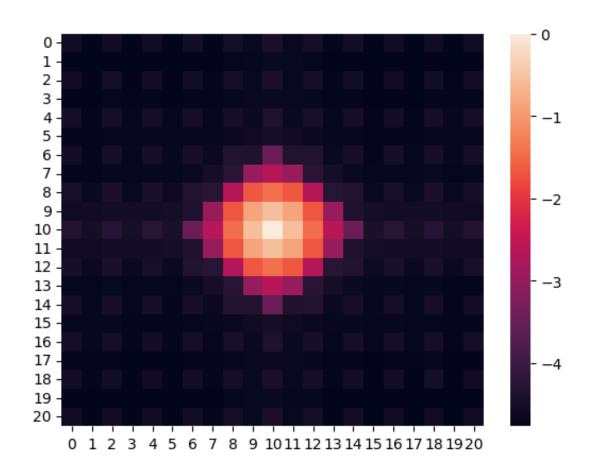
- Existing works rely on adding synthetic Gaussian noise for supervised training, which is not realistic
- Obtaining a real-world dataset for supervised \bullet training is labor intensive and time-consuming

Related Work

Local and Global Blind-Patch Network (LG-BPN) [2]

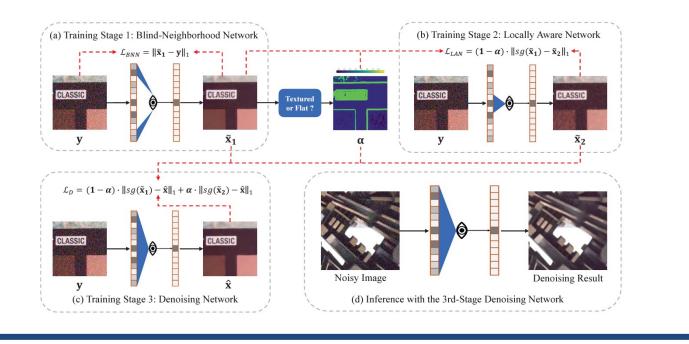
- Uses two branches to capture local and global features simultaneously
- The global branch captures a receptive field of 21x21, which is very expensive

Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising (SSID) [3]


- Replace model components with other SOTA parts to explore model interchangeability
 - LGBPN-related
 - (1) Replace LGBPN's Local Branch with SSID's BNN
 - (2) Replace concatenation fusion with average fusion
 - (3) Replace DCL layers by DTB and lower the number of DTB from 6 to 3 to reduce model complexity
 - (4, 5) Only use LGBPN's Local (4) / Global (5) Branch
- SSID-related
 - (1) Replace SSID's BNN with LGBPN's Local Branch
 - (2) Replace LAN's loss function to supervise from the noisy image instead of **BNN's results**

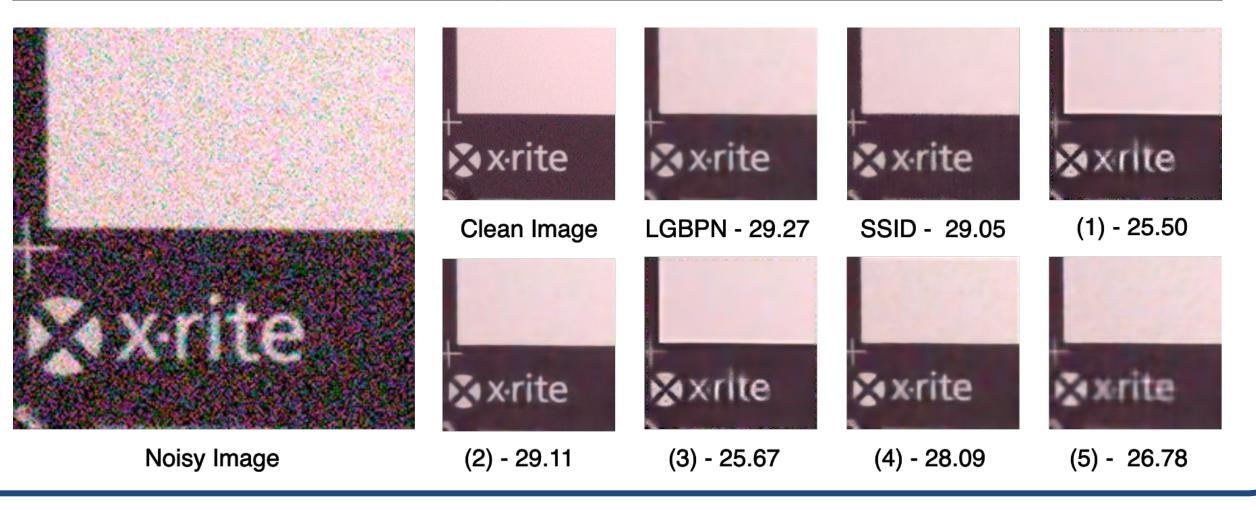
Experimental Results

Correlation Map between image pixels


- Noise are mostly correlated within a • 9x9 receptive field
- We observe an unexpected fluctuation • pattern of noise outside the 9x9 receptive field

Model Results

	PSNR	SSIM


- A three-stage model that balances features between • flat and texture regions
- We leverage the modularity of the three-stage • model and replace its components with some SOTA model parts

References

[1] Abdelhamed, et al., A high-quality denoising dataset for smartphone cameras, CVPR, 2018 [2] Wang, et al., LG-BPN Local and global blind-patch network for self-supervised real-world denoising, CVPR, 2023 [3] Li, et al., Spatially adaptive self-supervised learning for realworld image denoising, CVPR, 2023

LGBPN (Original)	37.280	0.9360
LGBPN (1)	33.546	0.8446
LGBPN (2)	37.138	0.8858
LGBPN (3)	36.798	0.8810
LGBPN (4) / SSID (1 - Stage 1)	36.038	0.8629
LGBPN (5)	36.212	0.8614
SSID (Original)	37.390	0.9340
SSID (1)	TBD (Stage 3 In Progress) TBD	
SSID (2)		

