Weakly-supervising the Deep Priors for Blind Image Deconvolution
Zhixiang Chi, ID: 998884239
ECE Department, University of Toronto

Motivation
- This work is inspired by a deep priors for blind image deconvolution framework what is optimized by reconstructing the input blurry image [1].
- The latent image is an intermediate result that is not guaranteed to be what we expected [2, 3].
- Therefore, we utilize a pre-trained deblurring network for weak supervision.

Proposed methods
- Main contribution:
 - The existing network is randomly initialized and expected to model the image prior (limited prior knowledge).
 - We propose to add a supervision directly at the intermediate latent image by utilizing a pre-trained deblurring model.
 - A early stopping criteria is developed to avoid overfitting.

Related Work
- Ren et al. [1] proposed a self-supervised method to deblur an image. However, the network is randomly initialized without learned rich feature from large-scale dataset. The expected deblurred image is also the intermediate result which might not be clean as we expected [2, 3]. It also requires large number of iterations to deblur an image. An adaptive early stopping criteria should be developed for efficiency.

Experimental Results
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>33.07</td>
<td>25.19</td>
<td>25.56</td>
<td>33.80</td>
<td>33.41</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.931</td>
<td>0.771</td>
<td>0.729</td>
<td>0.938</td>
<td>0.924</td>
</tr>
</tbody>
</table>

Table 1 PSNR/SSIM results for different methods. Adding weak supervision is beneficial.

<table>
<thead>
<tr>
<th></th>
<th># Sequences</th>
<th>5</th>
<th>10</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td></td>
<td>32.63</td>
<td>33.24</td>
<td>33.29</td>
<td>32.78</td>
</tr>
<tr>
<td>SSIM</td>
<td></td>
<td>0.919</td>
<td>0.935</td>
<td>0.936</td>
<td>0.931</td>
</tr>
</tbody>
</table>

Table 2 PSNR/SSIM results for utilizing MSE as a stopping criteria.

References
[3] Chi et al, All at Once: Temporally Adaptive Multi-Frame Interpolation with Advanced Motion Modeling, ECCV, 2020