Monocular Shape Sensing for Continuum Robot

Thomas Enxu Li, Jimmy Chengnan Shentu, Vicky Chaojun Chen **University of Toronto**

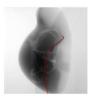
Motivation

- Continuum Robot refers to the subcategory of robotic manipulators that do not contain rigid links or identifiable joints. Precise motion control of continuum robots requires real-time and accurate shape sensing.
- Model-based shape sensing methods are sensitive to unknown external loads, and sensorbased methods take up valuable space in the robots and pose challenges to miniaturization.
- Existing visual-based shape sensing methods utilize two or more cameras to attain high accuracy, but such conditions may not be achievable in real-world applications.
- We investigate the feasibility of monocular visual shape estimation for a continuum robot in terms of accuracy and computation time.

Tendon-driven continuum robot prototype with three extensible sections at different lengths. [1]

Related Work

Burgner et al. achieved a mean error of 0.473 \pm 0.353 mm using segmentation and epipolar geometry analysis [2].



Dalvand et al. achieves a maximum measurement error of 0.5 mm for the tip position and length and 0.5 degrees for the bending and orientation angles useing a stereo vision system and a 3D reconstruction algorithm [3].

Croom et al. achieves an average error of 1.53 mm uses a stereovision-based self organizing map [4].

References

[1] Neumann, and Burgner-Kahrs. Considerations for follow-the-leader motion [1] Neumann, and Burgher-Rains. Considerations for follow-the-leader motion of extensible tendon-driven continuum robots. *IEEE International Conference on Robotics and Automation (ICRA)*, 2016.
[2] Burgner, Herrell, and Webster. Toward fluoroscopic shape reconstruction for control of steerable medical devices. ASME Dynamic Systems and

Control Conference, 2011. [3] Dalvand, Nahavandi, and Howe. High speed vision-based 3d

reconstruction of continuum robots. IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016.

(4) Croom, Rucker, Romano, and Webster, Visual Sensing of continuum robot shape using self-organizing maps, IEEE International Conference on Robotics and Automation, 2010.

[5] Ronneberger, Fischer, Brox, U-Net: Convolutional Networks for

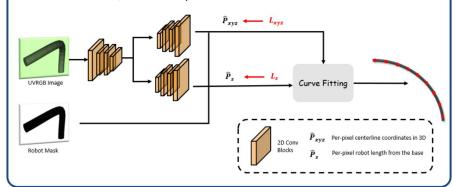
Biomedical Image Segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015. [6] He, Zhang, Ren and Sun, Deep Residual Learning for Image Recognition," in IEEE CVPR, 2016.

[7] Cortinhal, Tzelepis, and Aksoy. Salsanext: Fast semantic segmentation of lidar point clouds for autonomous driving, IEEE Intelligent Vehicles

Symposium, 2022. [8] Qi, Su, Mo, and Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, in IEEE CVPR, 2017.

New Technique

Problem Formulation: Assume we are given an RGB image of the robot, $I_{RGB} \in \mathbb{R}^{H \times W \times 3}$ and a binary occupancy mask of the robot, $O \in \mathbb{B}^{H \times W}$. The goal is to find the position of the robot in 3D, parameterized by the 3D coordinates of M evenly-spaced points on the centerline of the robot, denoted as $P_r \in \mathbb{R}^{M \times 3}$.



Experimental Results

Dataset

- We collected a custom dataset using an existing simulator. The simulated tendon-driven continuum robot is 280 mm in length and 10 mm in radius with a protective sleeve.
- 50,000 randomly sampled robot configurations are rendered with the Visualization Toolkit (VTK), where we save 512 x 512 RGB and depth images along with camera configuration and ground truth robot shape. Texture was added to make the dataset more realistic.
- 80% of the dataset are for training and validation and the remaining 20% are reserved for testing.

Evaluation

Shape sensing for continuum robots has typically been evaluated in terms of mean error of robot shape (MERS) and mean error of tip tracking (METE).

$$MERS = \frac{1}{M} \sum_{j=1}^{M} \left| \left| \widehat{P}_{r,j} - P_{r,j} \right| \right|$$

$$METE = \left| \left| \widehat{P}_{r,M} - P_{r,M} \right| \right|_{2}$$

We also report the runtime of each approach in terms of frames per second (FPS).

Architecture	Backbone			Decoders				Fitting		Metrics		
	UN	RN	SN	D1	D2	D3	D4	PN	Ρ̈́F	MERS	METE	FPS
Baseline	1			1				1		16.22	34.47	26.43
	1				✓				✓	15.74	15.94	26.81
Ablations	1			1		1			✓	15.93	17.45	20.12
		✓		1		1			✓	15.40	16.59	11.01
			1	1		1			1	15.73	17.54	15.94
	1			1		1	✓		✓	1.79	3.48	15.87
Proposed	1				1		1		1	1.76	3.29	20.3

Ablation study of the proposed components vs baseline. UN: Unet [5], RN: ResNet [6], SN: SalsaNext [7], D1: Decoding per-pixel xyz coordinates on surface, D2: Decoding per-pixel xyz coordinates on centerline, D3: Decoding per-pixel \(\Delta xyz \) offset from surface to centerline, D4: Decoding per-pixel length from robot base, PN: PointNet [8], PF: Polynomial fitting. FPS: measured using Intel(R) Xeon(R) CPU E5-2687W v4 and NVIDIA RTX 2080Ti. Metrics are presented in mm.

