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Motivation

+ Continuum Robot refers to the subcategory of
robotic manipulators that do not contain rigid links
or identifiable joints. Precise motion control of
continuum robots requires real-time and accurate
shape sensing.

* Model-based shape sensing methods are
sensitive to unknown external loads, and sensor-
based methods take up valuable space in the
robots and pose challenges to miniaturization.

« Existing visual-based shape sensing
methods utilize two or more cameras to
attain high accuracy, but such conditions may not
be achievable in real-world applications.

* We investigate the feasibility of monocular
visual shape estimation for a continuum robot in
terms of accuracy and computation time.

Tendon-driven continuum
robot prototype with three
extensible sections at
different lengths. [1]
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Related Work

Burgner et al. achieved
a mean error of 0.473
10.353 mm using
segmentation

and epipolar geometry
analysis [2].

= Dalvand et al. achieves a maximum measurement
error of 0.5 mm for the tip position and length and
0.5 degrees for the bending and orientation angles
useing a stereo vision system and a 3D
reconstruction algorithm [3].

» Croom et al. achieves
an average error of 1.53
mm uses a stereo-
vision-based self
organizing map [4].
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New Technique

Problem Formulation: Assume we are given an RGB image of the robot, Ipgg € RFWX3
and a binary occupancy mask of the robot, 0 € BH*Y, The goal is to find the position of the
robot in 3D, parameterized by the 3D coordinates of M evenly-spaced points on the
centerline of the robot, denoted as P,. € RM*3.
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(" Experimental Results )

Dataset

* We collected a custom dataset using an existing simulator. The simulated tendon-driven

continuum robot is 280 mm in length and 10 mm in radius with a protective sleeve.

= 50,000 randomly sampled robot configurations are rendered with the Visualization
Toolkit (VTK), where we save 512 x 512 RGB and depth images along with camera
configuration and ground truth robot shape. Texture was added to make the dataset
more realistic.

» 80% of the dataset are for training and validation and the remaining 20% are reserved

for testing.
Evaluation
= Shape sensing for continuum robots has typically been evaluated in terms of mean
error of robot shape (MERS) and mean error of tip tracking (METE).
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METE = |[P,. — Pr,M||2

= We also report the runtime of each approach in terms of frames per second (FPS).

MERS

|Prj = Prj

Architecture Backbone Decoders Fitting Metrics
UN RN SN |D1 D2 D3 D4 | PN PF || MERS METE FPS
. v v v 16.22 34.47 26.43

Baseline

v v v 15.74 15.94 26.81
v v v v 15.93 17.45 20.12
Alations v v v v 15.40 16.59 11.01
v v ' v 15.73 17.54 15.94
v v v v v 1.79 3.48 15.87
Proposed v v v v 1.76 329 20.34

Ablation study of the proposed components vs baseline. UN: Unet [5], RN: ResNet [6], SN: SalsaNext [7],
D1: Decoding per-pixel xyz coordinates on surface, D2: Decoding per-pixel xyz coordinates on centerline,
D3: Decoding per-pixel Axyz offset from surface to centerline, D4: Decoding per-pixel length from robot
base, PN: PointNet [8], PF: Polynomial fitting. FPS: measured using Intel(R) Xeon(R) CPU E5-2687W v4
and NVIDIA RTX 2080Ti. Metrics are presented in mm.
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