
Introduction to Neural Networks
MLPs, CNNs, Backpropagation, Learned Image Processing

CSC2529
David Lindell
University of Toronto
cs.toronto.edu/~lindell/teaching/2529 *slides adapted from CS231n at Stanford

Announcements

• HW4 due Wednesday 25/10
• HW5 is out

• Problem session for HW5 tomorrow

Neural Networks in Computational Imaging

• Now: learned pipelines for computational imaging

Learning CFAs

Learning ISPs

Learning coded apertures

Neural Networks in Computational Imaging

• Now: learned pipelines for computational imaging

Learned denoising Learned deblurring HDR Imaging

Today

• What is a neural network?

• Training/optimizing neural nets
• Why “neural”?

• Convolutional neural networks
• Applications & inverse problems

What is a neural network?

• Image classification example

Image Classification

• Image classification example

Images

MNIST Dataset

• Image classification example

Images Class

“zero”
“one”

…

“nine”

Image Classification

• Image classification example

Images

What the computer “sees”

Image Classification

• Image classification example

Images Challenges

Intra-class variation
• stroke widths
• alignment
• writing styles

Image Classification

• Image classification example

Images Challenges

Intra-class variation
• stroke widths
• alignment
• writing styles

Inter-class similarities
• “four” or “nine”?

Image Classification

• Image classification example

Images

Can’t hardcode solution!

Implementation?

Image Classification

• Data-driven approach
• Collect training images

and labels

• Train a classifier using
machine learning

• Evaluate the classifier on
unseen images

Image Classification

Implementation?

Image Classification

• Linear Model

vectorize

Image Classification

• Linear Model

vectorize

Image Classification

• Linear Model

vectorize

Image Classification

• Linear Model

vectorize

Length of this vector is the “dimensionality” of our problem!

Image Classification

• Linear Model

vectorize

Image Classification

• Linear Model

vectorize
10 numbers
with class
scores

Image Classification
• Linear model: geometric intrepretation

Each image is a point in an
N-dimensional space

- N is the number of pixels

Image Classification
• Linear model: geometric interpretation

“8” classifier

“4” classifier

“2” classifier

“0” classifier

Computes inner product
between rows of W and x!

- Each row of W is a hyperplane
- Sign of inner product tells you

which side of the hyperplane
- “separates” the digits

Image Classification

• Linear model (visual interpretation)

Learned filters (rows of W)

Image Classification

• Limits of linear classifiers

Linear classifiers learn linear
decision planes

What if dataset is not linearly
separable?

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

• 3-layer MLP

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

• 3-layer MLP

Non-linearity/activation function between linear layers

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

• 3-layer MLP

Otherwise we have:

Activation Functions
…many to choose from

… ReLU is a good general-purpose choice: ReLU(x) = max(0, x)

softplus

ReLU

leaky ReLU

tanh sigmoid

ELU

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

vectorize

Back to our classification example…

784 100 10
class scores

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

vectorize

Back to our classification example…

784 100 10
class scores

Hidden layer

Multilayer Perceptrons (MLPs)

• Linear Model

• 2-layer MLP

vectorize

Back to our classification example…

784 100 10
class scores

Now we have 100 shape templates, shared between classes

• Overcomes limits of linear classifiers

• Can learn non-linear decision
boundaries

• Complexity scales with the
number of neurons/hidden
layers

Multilayer Perceptrons (MLPs)

• More parameters is not always
better!
• Can lead to overfitting the

training data
• Performance on test data is

worse

Multilayer Perceptrons (MLPs)
train

test

• More on classification…

• https://cs231n.github.io/linear-
classify/

• https://csc413-uoft.github.io/

Multilayer Perceptrons (MLPs)

Today

• What is a neural network?

• Training/optimizing neural nets
• Why “neural”?

• Convolutional neural networks
• Applications & inverse problems

Image Inpainting

vectorize

784 100 784

reshape

predicted
output

masked
input

Training the MLP

Image inpainting example

Training dataset:
• masked and complete image

pairs

• train network to predict the
complete image

masked images

ground truth

Training the MLP

Train the network to minimize the loss function

network
parameters

Training the MLP

Train the network to minimize the loss function

ground truth image network prediction

network
parameters

input

Training the MLP

How do we figure out ?

ground truth image network prediction

network
parameters

input

Training the MLP

Gradient-based optimization

[Li et al. ‘18]
Loss Landscape

Training the MLP

Need to calculate the partial derivative with respect to each parameter

Training the MLP

Generally there are 3 options

1. Numerical differentiation
2. Symbolic differentiation
3. “Automatic” differentiation

Numerical Differentiation

Not very accurate, computationally expensive

Easy to implement! Can be used to check your analytical answers..

Symbolic Differentiation

chain rule, product rule…

Accurate, but must be manually calculated for each term
Tedious!

Automatic Differentiation

Think about the problem as a “computational graph”

Divide and conquer using the chain rule

Enables “backpropagation” – an efficient way to take
derivatives of all parameters in a computational graph

Automatic Differentiation

Think about the problem as a “computational graph”

Divide and conquer using the chain rule

Automatic Differentiation

Think about the problem as a “computational graph”

Divide and conquer using the chain rule

Automatic Differentiation

Think about the problem as a “computational graph”

Divide and conquer using the chain rule

Automatic Differentiation

Think about the problem as a “computational graph”

Divide and conquer using the chain rule

We can calculate analytical
expressions for each of these terms
and then plug in our values

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

(assume scalar values for now)

Autodiff Example

Let’s plug in the values now…

5

3 2 22

Autodiff Example

Let’s plug in the values now…

5

3 2

15

22

Autodiff Example

Let’s plug in the values now…

5

3 2

15 15

22

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

8

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

82

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

821

Autodiff Example

Let’s plug in the values now…

5

3 2 22

15 15 30 32

8215

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

Save these intermediate values during forward computation

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

Then we perform a “backward pass”

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

16

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

16

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

1616

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

1616

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

8215

161680

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

215

161680

What about ?

8

Autodiff Example

What is backpropagation?

5

3 2 22

15 15 30 32

215

161680

What about ?

We can re-use computation!

Autodiff Example

PyTorch Code:

Image Inpainting Training Loop
1. Sample batch of images from dataset

Image Inpainting Training Loop
1. Sample batch of images from dataset

2. Run forward pass to calculate network output for each image

Image Inpainting Training Loop
1. Sample batch of images from dataset

2. Run forward pass to calculate network output for each image

3. Run backward pass to calculate gradients with backpropagation

Image Inpainting Training Loop
1. Sample batch of images from dataset

2. Run forward pass to calculate network output for each image

3. Run backward pass to calculate gradients with backpropagation

4. Update parameters with stochastic gradient descent

4. Update parameters with stochastic gradient descent

Vector Differentiation

But wait, aren’t these vectors?

Vector Differentiation

Recap: vector differentiation

Scalar by Scalar

?

Vector Differentiation

Recap: vector differentiation

Scalar by Scalar

Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector

?

Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector

Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector Vector by Vector

?

Vector Differentiation

Recap: vector differentiation

Scalar by Scalar Scalar by Vector Vector by Vector

Vector Differentiation

w → x → y
∈
R
N

∈
R
P

∈
R
M

∂y
∂x

∈ R
N×M∂x

∂w
∈ R

P×N

Vector Differentiation

w → x → y
∈
R
N

∈
R
P

∈
R
M

∂y
∂x

∈ R
N×M∂x

∂w
∈ R

P×N

∂y
∂w

=
∂x
∂w

∂y
∂x

∈ R
P×M

Vector Differentiation

w → x → y
∈
R
N

∈
R
P

∈
R
M

∂y
∂x

∈ R
N×M∂x

∂w
∈ R

P×N

∂y
∂w

=
∂x
∂w

∂y
∂x

∈ R
P×M

sometimes the Jacobian is defined as the transpose of this,
depending on whether you left or right multiply
(I like to left multiply because it aligns with the direction of the computational graph)

Recap: vector differentiation

Example 1: matrix multiply

Recap: vector differentiation

Example 1: matrix multiply

Recap: vector differentiation

Example 1: matrix multiply

Recap: vector differentiation

Example 1: matrix multiply

∂

∂g
W2g

=
∂

∂g

w11g1 + · · ·+ w1ngn
.
.
.

. . .
.
.
.

wm1g1 + · · ·+ wmngn

=

w11 · · · wm1

.

.

.
. . .

.

.

.

w1n · · · wmn

Recap: vector differentiation

Example 1: matrix multiply

∂

∂g
W2g

=
∂

∂g

w11g1 + · · ·+ w1ngn
.
.
.

. . .
.
.
.

wm1g1 + · · ·+ wmngn

=

w11 · · · wm1

.

.

.
. . .

.

.

.

w1n · · · wmn

= WT

2

Recap: vector differentiation
Example 2: elementwise functions

Recap: vector differentiation
Example 2: elementwise functions

Recap: vector differentiation
Final hint: dimensions should always match up!

You should be able to calculate derivatives of each of these
terms and then perform matrix multiplications without issues

Today

• What is a neural network?

• Training/optimizing neural nets
• Why “neural”?

• Convolutional neural networks
• Applications & inverse problems

Why “neural” network?

Why “neural” network?

Why “neural” network?

Input Layer Output Layer

Hidden Layer

Why “neural” network?

Input Layer Output Layer

Hidden Layer“Neuron”

Why “neural” network?

Input Layer Output Layer

Hidden Layer“Activations”

0.1

0.0

0.0

0.2

0.1

Why “neural” network?

Input Layer Output Layer

Hidden Layer

Image: CC BY-SA Jennifer Walinga

Loose analogy!

- Neurons have activation potentials,
all-or-none firing behavior

- Interconnectivity between actual
neurons is dense and complicated

- Connection between neurons is
complex non-linear dynamical
system

Today

• What is a neural network?

• Training/optimizing neural nets
• Why “neural”?

• Convolutional neural networks
• Applications & inverse problems

Drawbacks of fully-connected networks

• spatial structure is destroyed

• fully-connected weights do not scale

Convolutional Neural Networks

Image: CC Aphex34

• Exploit spatial structure
• Scale to large inputs with fewer parameters
• Remarkable performance for processing visual data

AlexNet & surge in popularity

AlexNet [Krizhevsky ‘12]

First convolutional
network for image
classification

2010: ImageNet Large Scale Visual Recognition Challenge
• 10 million labeled images

AlexNet & surge in popularity

AlexNet [Krizhevsky ‘12]

First convolutional
network for image
classification

2010: ImageNet Large Scale Visual Recognition Challenge
• 10 million labeled images

CNNs
[Russakovsky ’15]

AlexNet & surge in popularity

2010: ImageNet Large Scale Visual Recognition Challenge
• 10 million labeled images

Deep networks
[Russakovsky ’15]

VGG GoogLeNet ResNet
[Simonyan ‘14] [Szegedy ‘14] [He ‘15]

Image Classification Object Detection

Segmentation Pose estimation

[K
riz

he
vs

ky
 ‘1

2]
[F

ar
ab

et
 ‘1

3]

[T
os

he
v

‘1
4]

[R
en

 ‘1
6]

Imaging & Image processing

Image Denoising Image Deblurring

Learned ISPs End-to-End Optimization

[Z
ha

ng
 ‘1

7]

[N
ah

 ‘1
7]

[C
he

n
‘1

8]

[M
et

zl
er

 ‘1
9]

Imaging & Image processing

Monocular Depth Estimation

Synthetic Depth-of-FieldImage Super-resolution

Image Relighting

[E
ig

en
 ‘1

4]

[S
un

 ‘1
9]

[L
im

 ‘1
7]

ai.googleblog.com

Fully-Connected Layer

Vectorized Image

1
3072

Weight Matrix Output Activation

1
100weights 100 x 3072

Convolutional Layer

32

32

Filter

3 5
5

3
weights 5x5x3

Input Image

Convolutional Layer

32

32

Filter

3 5
5

3
weights 5x5x3

Input Image

“Channel” dimension

Convolutional Layer

32

32

3

Input Image

Convolutional Layer

32

32

3

Output of inner product

Input Image

Convolutional Layer

Input Image

32

32

3

28

28

1

Activations

Convolution = sliding window + inner product

Convolutional Layer

Input Image

32

32

3

28

28

1

Activations Input

Output

https://github.com/vdumoulin/conv_arithmetic

Convolutional Layer

32

32

3

Input Image Activations

28

28

4

Multiple output channels
using multiple filters

Fully-Connected Layer

Vectorized Image

1
3072

Weight Matrix Output Activation

1
100weights 100 x 3072

Special case of convolutional layer when filter size = input size!

Convolutional Neural Network

32

32

3

Input Image

28

28

4

4 filters of
5x5x3
+ ReLU

6 filters of
5x5x4
+ ReLU 24

24

6

Layer 1
Activations

Layer 2
Activations

…

Case Study: AlexNet

First-layer FiltersInput Image

Case Study: AlexNet

Activations

Case Study: AlexNet

First-layer Filters

Similar to simple cells
in visual cortex!
- Edge detectors

Image: CC BY-SA Selket

Case Study: AlexNet

[Hubel & Wiesel 1959]
Simple cells in visual cortex
detect edges, complex cells
compose earlier responses

CNN higher layer filters

[Olah ‘17]
Dataset examples that maximize neuron outputs

CNN Building Blocks

Design choices:
• filter size
• number of filters
• padding
• stride

Layer types:
• pooling
• transpose convolutions
• upsampling layers

CNN Building Blocks

Filter size

1x1
3x3

5x5

CNN Building Blocks

Number of channels

N_out x N_in x 1 x 1

N_out x N_in x 5 x 5
N_out x N_in x 3 x 3

CNN Building Blocks

padding

No padding padding=1
https://github.com/vdumoulin/conv_arithmetic

CNN Building Blocks

padding

No padding padding=1
https://github.com/vdumoulin/conv_arithmetic

output = input – filtersize + 2 * padding + 1

CNN Building Blocks

stride

stride = 1 stride = 2
https://github.com/vdumoulin/conv_arithmetic

output = (input – filtersize + 2 * padding) / stride + 1

Convolutional Neural Network

32

32

3

Input Image

28

28

4

4 filters of
5x5x3
+ ReLU

6 filters of
5x5x4
+ ReLU 24

24

6

Layer 1
Activations

Layer 2
Activations

…

Layer types: Pooling

e.g., max pool size=2, stride=2

Transpose Convolution

stride=1 stride=2
https://github.com/vdumoulin/conv_arithmetic

Transpose Convolution (checkerboard artifacts)

[Odena ‘16]

Upsampling layers

e.g., bilinear upsampling, nearest neighbor upsampling

Common Network Architectures

VGG: one of the first “deep” CNNs

downsampling with max pooling
Image: Davi Frossard

Common Network Architectures

VGG: one of the first “deep” CNNs

Classification scores output with fully-connected layers
Image: Davi Frossard

Common Network Architectures

VGG: one of the first “deep” CNNs

Not suitable for image processing…
Image: Davi Frossard

Today

• What is a neural network?

• Training/optimizing neural nets
• Why “neural”?

• Convolutional neural networks
• Applications & inverse problems

Image denoising with DnCNN

[Zhang ‘16]

Key ideas: residual learning & batch normalization

Residual Learning

[Zhang ‘16]

Clean image = noisy image - estimated noise

Residual Learning

[He ‘15]

Popularized by residual nets “ResNets” for image classification

- Usually easier to optimize
- Better classification accuracy, good for many tasks!

Batch Normalization

Normalizes layer activations to zero mean, unit variance,
preventing distribution shifts during training
• can speed up and stabilize training
• seems to smooth out loss landscape

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html

Image denoising with DnCNN

[Zhang ‘16]

(Remember to disable the bias in your conv layer)

Image denoising with DnCNN

[Zhang ‘16]

No fully connected layers – can be applied to any input size

[Zhang ‘16]

[Zhang ‘16]

Multi-Scale Architectures

Uses image pyramid to process & deblur[Nah ‘18]

Multi-Scale Architectures

[N
ah

 ‘1
8]

U-Net: General-purpose architecture

[Ronneberger ‘15]

Introduced for biomedical image segmentation

• Uses residual connections

• Multi-scale processing (captures details at
different scales)

• Large receptive field!

U-Net: General-purpose architecture

U-Net: General-purpose architecture

Receptive field: size of the input
that contributes to the
activation/output value

[Lin ‘17]

U-Net: General-purpose architecture

Large receptive field is important
for high-level vision tasks and
semantic understanding

[Araujo ‘19]

Learned ISP

[Chen ‘18]

Learned ISP

[Chen ‘18]

Learned ISP

Trained on short-exposure (noisy) / long-exposure image pairs
[Chen ‘18]

Learned ISP

[Chen ‘18]

Deep optics for HDR imaging

What kind of PSF would be good for HDR imaging?
- Should preserve fine details
- Should help to avoid saturation

Deep optics for HDR imaging

[Metzler ‘20]

[Metzler ‘20]

Deep optics for HDR imaging

U-Net again

[Metzler ‘20]

Deep optics for HDR imaging

Minimize difference between
reconstruction and tone-mapped
GT images

[Metzler ‘20]

Deep optics for HDR imaging

[Metzler ‘20]

Image Relighting

U-Net
[Sun ‘19]

Image Relighting

[Sun ‘19]

Image Relighting

[Sun ‘19]
How would you train this network?

Image Relighting

[Sun ‘19]

Light-stage dataset capture (Google)

Image Relighting

[Sun ‘19]

Re-rendered
image

Environment
map

OLAT photos
(columns)

Image Relighting

[Sun ‘19]

Image Relighting

[Sun ‘19]

Now a feature in pixel phones

Image Generation

Do we always need training datasets?

Deep image prior

Idea: Overfit a U-Net to a noisy image, but stop training early

[Ulyanov ‘20]

Deep image prior

The CNN itself is a good prior for natural images

[Ulyanov ‘20]

Deep image prior

During training, the network fits the image before noise [Ulyanov ‘20]

Deep image prior

CorruptedGT Trained CNN DIP

[Ulyanov ‘20]

Summary

• “Neural” Networks & CNNs

• Building blocks of CNNs and deep networks
• Applications & inverse problems

• Just scratches the surface!
• GANs, diffusion models, neural fields, neural rendering,

text-to-image models, autoregressive models, transformers…

Next Time

• Optimization using alternating direction method of multipliers

• Hybrid techniques!

References and Further Reading
slides adapted from Stanford CS231N: http://cs231n.stanford.edu/slides/

CS229/CS231n notes on linear classifiers
https://cs231n.github.io/linear-classify/
https://cs229.stanford.edu/notes2021fall/cs229-notes1.pdf

CS231n Notes on backprop
http://cs231n.stanford.edu/handouts/linear-backprop.pdf
https://cs231n.github.io/optimization-2/

Intro to pytorch autograd

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Extending pytorch autograd functions
https://pytorch.org/docs/stable/notes/extending.html

References and Further Reading
slides adapted from Stanford CS231N: http://cs231n.stanford.edu/slides/

Araujo, André, Wade Norris, and Jack Sim. "Computing receptive fields of convolutional neural networks." Distill 4.11 (2019)

Chen, Chen, et al. "Learning to see in the dark." Proc. CVPR. 2018.
Eigen, David, Christian Puhrsch, and Rob Fergus. "Depth map prediction from a single image using a multi-scale deep network." Proc. NeurIPS. (2014).

Farabet, Clement, et al. "Learning hierarchical features for scene labeling." IEEE TPAMI. 35.8 (2012): 1915-1929.
He, Kaiming, et al. "Deep residual learning for image recognition.“ Proc. CVPR. 2016.

Hubel, David H., and Torsten N. Wiesel. "Receptive fields of single neurones in the cat's striate cortex." The Journal of physiology 148.3 (1959): 574-591.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Proc. NeurIPS 25 (2012): 1097-1105.
Lim, Bee, et al. "Enhanced deep residual networks for single image super-resolution." Proc. CVPR Workshops. 2017.

Lin, Haoning, Zhenwei Shi, and Zhengxia Zou. "Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network." Remote sens. 9.5 (2017): 480.
Metzler, Christopher A., et al. "Deep optics for single-shot high-dynamic-range imaging.“ Proc. CVPR. 2020.

Nah, Seungjun, Tae Hyun Kim, and Kyoung Mu Lee. "Deep multi-scale convolutional neural network for dynamic scene deblurring." Proc. CVPR. 2017.

Odena, Augustus, Vincent Dumoulin, and Chris Olah. "Deconvolution and checkerboard artifacts." Distill 1.10 (2016)
Olah, Chris, Alexander Mordvintsev, and Ludwig Schubert. "Feature visualization." Distill 2.11 (2017)

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and
computer-assisted intervention. 2015.

Ren, Shaoqing, et al. "Faster R-CNN: towards real-time object detection with region proposal networks.“ IEEE TPAMI. 39.6 (2016): 1137-1149.

Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge.“ IJCV 115.3 (2015): 211-252.
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." Proc. ICLR (2014).

Sun, Tiancheng, et al. "Single image portrait relighting." ACM Trans. Graph. 38.4 (2019): 79-1.
Toshev, Alexander, and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." Proc. CVPR. 2014.

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Deep image prior." Proc. CVPR. 2018.

Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising." IEEE Trans. Imag. Proc. 26.7 (2017): 3142-3155.

Extra backpropagation example (from Stanford CS231n)

Extra backpropagation example

Extra backpropagation example

Extra backpropagation example

Extra backpropagation example

Extra backpropagation example

Extra backpropagation example

Extra backpropagation example

Extra backpropagation example

