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Abstract—Computed Tomography is a popular medical image examination tool. Low-dose computed chromography (LDCT) has been
introduced recently to control the radiation side effects on patients. However, LDCT scans often have low contrast and high noise
levels, which limits the adoption rate of LDCT. In this work, five denoising methods are implemented and evaluated on their ability to
improve image quality at different noise levels in quantitative measures: Peak signal-to-noise ratio (PSNR) and mean square error
(MSE) and qualitative measure: visualization. Among the methods, ADMM conserves most anatomical details, while convolutional
Autoencoder provides the most consistent denoising performance. Denoised LDCT images can be used as good references in future

clinical diagnoses.

Index Terms—Image Denoising, Computed Tomogrpahy

1 INTRODUCTION

Computed Tomography (CT) is a widely used medical
screening tool. This X-ray technology produces high-quality
cross-sectional images and can be used to show various
anatomical structures in great detail, including bones, mus-
cles, organs, and blood vessels. In clinical settings, CT scans
are commonly used in disease diagnosis and many surgical
interventions [1]. One major concern about using CT is
its high radiation exposure. When a series of scans are
needed to monitor some disease progression or recovery
continuously, the cumulative radiation toxicity of CT scans
will cause radiation syndrome and increase the risk of
developing fatal cancer [2].

To address the toxicity problem of Full-dose CT (FDCT)
scans, clinicians started to reduce the radiation dose to half
or a quarter of the regular dose [3]. This is named Low-
dose CT scans (LDCT). Although LDCT lowers radiation
exposure significantly, it is not a perfect solution. LDCT
does not provide image output of similar quality as FDCT in
many cases. Lowering the dose would unavoidably increase
the data noise and decrease the image contrast, affecting
clinicians” disease diagnosis decisions [4].

In this project, we reviewed a set of computational
image-denoising algorithms to improve the LDCT image
quality to support future clinical research and patient usage.

2 RELATED WORK

Image denoising has been widely investigated in the past.
Computational denoisers are mainly classified in two cate-
gories: filter-based methods and model-based methods.
Some of the early works utilize linear and nonlinear fil-
ters to remove noise in the spatial domain. Examples include
mean filtering, Wiener filtering and bilateral filtering. Spatial
filtering can eliminate noise considerably. However, image
blurring is often observed in their results [5]. In addition
to spatial domain filtering, transformation techniques have
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also been developed to explore noise in different domains.
Examples include Fourier transform, wavelet transform,
and cosine transform [6].

Non-quadratic regularization models are later studied
to address the blurring issue. Total variation-based reg-
ularization models and non-local regularization models
have shown promising results, and great success has been
achieved by a combined model in [7]. The limitation of this
method is the loss of structural information. Thus, visual
image quality is still not ideal.

To further improve denoising performance, model-based
optimization methods and convolutional neural network
(CNN) based methods are proposed. Model-based opti-
mization involves iterative inference optimization upon the
image prior. Popular methods include the Adam and Al-
ternating Direction Method of Multipliers (ADMM). Long-
running time is the major concern when using model-based
methods on large datasets.

With the advanced development in computing hardware
and software, deep learning models recently draw a lot
of attention in image processing tasks, including image
denoising [8]. CNN based methods minimize a loss function
through training on a set of degraded-truth image pairs.
Different neural network structures are designed for differ-
ent purposes. Neural networks-based denoisers can achieve
competitive denoising performance and acceptable running
time.

3 METHODS AND EVALUATIONS

In this section, we will first discuss five denoising methods:
one linear estimation method, two neural network-based
methods and two ADMM-based methods. Then, the data
set and data pre-processing steps will be described. Lastly,
we will represent the experimental setup used to evaluate
the denoising performances.

3.1

Wiener filtering is a simple linear estimation method. It
is composed of an inverse kernel and a noise-dependent
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damping factor, as shown in the equations below
|E (k)2 Fi),
|F(k)]? +1/SNR(w) F(k)

where SN R(w) is the ratio between the signal variance and
noise variance at w.

iest = F_l(

3.2 Convolutional Autoencoder

Autoencoder (AE) is an unsupervised neural network-based
model which compresses and regenerates data [9]. It is
widely used in medical research in high dimensional data
reduction and latent feature extraction [10]. In our study,
we adapted the network structures of AE by setting the
input as noised image and the output as FDCT. AE has
two components: An encoder and a Decoder. Equations are
shown below:

Encoder : Encoded = o1(W; - LDCT) + by

Decoder : Denoised = o9(Ws - Encoded) + by

Convolutional Autoencoder contains convolutional layers
which detect spacial information in image data. The struc-
ture of the convolutional Autoencoder is shown in Fig. 1.
The loss or learning objective of the convolutional Autoen-
coder is the mean square error (MSE) between denoised
LDCT and paired FDCT.
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Fig. 1. Convolutional Denoising Autoencoder Network Structure

3.3 DnCNN

Zhang et al. proposed CNN based model DnCNN that
learnt the residual distribution, which can handle Gaussian
denoising with unknown noise level [11]. AE denoiser is
designed to minimize the difference between the denoised
image and the FDCT, the truth. Other than AE, DnCNN'’s
learning objective is to find the distribution of noise. All the
network layers but the final layer learned the distribution
of noise and the final layer substracted predicted noise
from the input image and output the denoised image. The
network structure of DnCNN is shown in Fig. 2.

3.4 ADMM

The alternating direction method of multipliers (ADMM) is
a classical algorithm to solve convex optimization problems
[12]. ADMM has low computation time, even when the
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Fig. 2. DnCNN Network Structure

dataset is large. ADMM decomposes the complex optimiza-
tion problem into smaller sub-problems. Each sub-problem
is then solved using proximal operations. The general form
of ADMM is shown in the equation below

1
minimize §||b — Az||2 + \T'(z)

where the first term describes the data fidelity and the
second term describes some image prior. This equation is
subject to Kz — z = 0 for some K and z.

3.4.1 TV Prior

The total variation (TV) image prior captures the gradient
magnitudes in the image in both X and Y directions. TV
prior is suitable for images with sparse gradients, it can be

computed as
oo |
(])yx)2 2
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where x is the input image.

Hyperparameters used in the TV prior for different types
of noises are determined through a parametric sweeping. A
set of paired CT scans were used, and the hyperparame-
ters which generate the best denoising performance were
selected.

3.4.2 DnCNN Prior

The denoising convolutional neural network (DnCNN) uses
a pre-trained DnCNN model as the denoiser. Prior work in
[11] [13] was used to characterize the denoiser.

3.5 Experimental Setup
3.5.1 Data Set

The data source is Low Dose CT Image and Projection Data
(LDCT-and-Projection-data) from the CPI Cancer Imaging
Program from the National Institutes of Health (NIH) [14].
Itis a library of CT patient projection data in an open format
DICOM-CT-PD. The project has three types of CT scans:
head CT, chest CT, and abdomen CT. A subset of 26 patients’
head CT was used to evaluate the aforementioned methods.
Each patient has 40 paired CT scans, including 20 FDCT and
20 LDCT. The total number of images are 1040. The data set
is then split into the training set (80%, 21 patients) and the
testing set (20%, 5 patients).



3.5.2 Data Preprocessing
The original square DICOM image size is 512 pixels x 512
pixels. Those images were first down-sampled CT images to
256 pixels x 256 pixels for better computational efficiency.
In addition, artifacts produced by CT machines were
presented in some CT images, as shown in Fig. 3 below. As
interested anatomical structures are all located in the center
of the scans, each CT image was cropped to keep the center
region. The cropped images have a size of 200 pixels x 200
pixels. All images are saved to PNG files.

Fig. 3. Example of artifacts on the Edges of N0O51 CT Image

3.5.3 Additive Noise

To further evaluate the robustness of the denoising methods,
simulated noises were applied to the LDCT images. Three
noise conditions were considered, Gaussian noise N (0, )
with a standard deviation of 10 noted as N (0, 10), Gaussian
noise with a standard deviation of 50 N (0, 50), and Poisson
noise Poi(\) with lambda of 50 Poi(50). Generated noisy
images are illustrated below in Fig. 4.

Gaussian: N(0, 10)

Gaussian: N(0, 50) Poisson: Poi(50)

Fig. 4. Simulated Noisy Image of Scan N051 with Different Noise Levels

3.6 Evaluations

The denoising methods described in Section 3 are evaluated
both quantitatively and qualitatively.

Two objective image quality metrics are used to measure
the performance of the denoising methods. The metrics
are computed using the denoised images and the down-
sampled full-dose CT (FDCT) images.

Peak signal-to-noise ratio (PSNR) quantifies the ratio
between the power of the signal and the power of the noises
in the image. A higher value of PSNR often represents a
better reconstruction of the noisy image. PSNR is computed
using the equation below

PSNR(z,y) = 10log, o [max(max(z), max(y))]?

|z —yl?

Mean Square Error (MSE) quantifies the average pixel
difference between the original image and the noisy image.
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A smaller value of MSE represents a smaller difference. MSE
is computed using the equation below

m

1 n
MSE = — Y “(i; — vi;)”
mn < (mj yJ)

i=1j=1

m  number of rows in cover image

n  number of columns in cover image
x;; pixel value from cover image

yi; pixel value from stego image

In addition, the performance of the denoising method will
be evaluated based on the perceived image quality in the
human eyes.

4 EXPERIMENTAL RESULTS

Denoising methods described in Section 3 were applied to
the noisy images sequentially, and the denoised results of
one CT scan of patient N051 are demonstrated below in Fig.
5. Zoom in details in the results are demonstrated below in
Fig. 6 and Fig. 7.
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Fig. 5. Denoising Results of one CT Scan of Patient N0O51 with Different
Noise Levels

Through comparing the rows in Fig. 5 qualitatively, it is
observed that Wiener filtering has acceptable performance
in both Gaul0 and Poi50 noise conditions. However, this
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Fig. 6. Zoom in Details in the Denoising Results (Anterior Region) of one
CT Scan of Patient N051 with Different Noise Levels

simple filtering method does not perform well in the Gau50
noise condition. The Wiener filtering minimizes the overall
mean square error regardless of the noise level. It is a
linear estimation of the original image. When the simulated
noise level is high, or the simulated noise is not simply
additive to the image, Wiener filtering is expected not to
be effective. Compared to Wiener filtering, two ADMM
methods have similar but better performance. They perform
well in both Gaul0 and PO50 noise conditions, but they
are not very effective in the Gau50 noise condition. ADMM
solves convex optimization problems. Noise dominates the
image in the Gaub50 noise condition, thus using ADMM-
based methods is not ideal. Autoencoder has the most
consistent denoising performance along all the methods,
noises have been removed for all three noise conditions.
DnCNN method has good performance in both Gau50 and
Poi50 noise conditions as well. However, the background in
the G'aul0 noise condition is distorted. DnCNN is designed
to learn the distribution of noise if there’s a low noise
level, there’s a chance to overfit the data by considering the
background as noise. We can see other than the distorted
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Fig. 7. Zoom in Details in the Denoising Results (Posterior Region) of
one CT Scan of Patient N0O51 with Different Noise Levels

background, the center of the image shows a good quality
of the patient’s head slice and provides proper details.

Through comparing the rows in Fig. 6 and Fig. 7 qualita-
tively, it is observed that ADMM-based methods, especially
ADMM with DnCNN, preserved more details than NN-
based methods. Results generated by the Autoencoder are
blurred, this is especially prominent near the cavities in 6.
Autoencoder involves M axpool and upsampling processes,
thus loss of data may be the main reason for this blur.
Under Gaub50 and Poi50 noise conditions, the DnCNN
method has a good balance between denoising and details
preserving, compared to other methods. The residual noises
can be visualized in the last picture in Fig. 7. Considering
the distorted background of denoised images, the DnCNN
is less competitive in quantitative measurements under the
Gaul0 Condition.

The quantitative performance measures of the denoising
results are summarized below in Table 1 and Table 2.

Through comparing the results in Table 1, Wiener filter-
ing has the highest PSNR values in both Gau10 and Gau50
noise conditions, while Autoencoder has the highest PSNR



TABLE 1
PSNR Results of the Denoising Methods and Different Noise Levels

Noise type Wiener ADMM+TV ADMM+DnCNN  Autoencoder DnCNN
Gaussian: N(0,10)  47.2 30.89 29.23 29.79 15.57
Gaussian: N(0,50)  47.29 26.05 29.03 28.67 27.75
Poisson: Poi(50) 14.14 14.16 14.18 29.94 27.79
TABLE 2

MSE Results of the Denoising Methods and Different Noise Levels
Noise type Wiener ADMM+TV  ADMM+DnCNN Autoencoder DnCNN
Gaussian: N(0,10)  0.00002  0.00082 0.0012 0.00114 0.03034
Gaussian: N(0,50)  0.00002  0.00248 0.00125 0.00147 0.0017
Poisson: Poi(50) 0.03858  0.03839 0.03815 0.00109 0.00167

values in the Poi50 noise condition. ADMM with DnCNN
prior performs slightly better on average, compared to
ADMM with TV prior. This observation is not consistent
to the qualitative comparison discussed above. The reason
for this discrepancy is likely due to the fact that the human
visual system is nonlinear. Distorted images with additive
Gaussian noise, Gaussian blue and high-frequency noise are
perceived more prominently in human eyes than the PSNR
values.

Similarly, in Table 2, Wiener filtering has the lowest
MSE values in both Gaul0 and Gaub50 noise conditions,
while Autoencoder has the lowest MSE values in the Poi50
noise condition. This observation is not consistent with the
previous qualitative discussion as well. It is likely due to
one limitation of MSE. When an original image is altered by
distortion, MSE scores of the distorted images will remain
the same. Therefore, MSE is not able to capture blurring and
many noises.

5 CONCLUSION

In conclusion, this work demonstrated satisfying denoising
performance on the LDCT head images with the proposed
methods. It is found that this denoising could not be
simply solved by linear filtering. Autoencoder gives the
most consistent denoising performance among the methods.
The ADMM-based methods preserve most details in the
anatomical structures. Additionally, DnCNN has a balanced
performance of denoising and preserving details. PSNR
values of the results mostly ranged above 20dB, and MSE
values of the results mostly ranged below 0.04.

This project is not without many limitations. First, a
relatively small data set was used to train the NN-based
methods. More patient data could be included to further
increase confidence in the results. Second, only head CT
scans are investigated and evaluated. CT scans at different
locations will have diverse anatomical structures, Abdomen
CT scans and chest CT scans could be included to improve
the robustness of the methods. Compared with other large-
scale image training tasks, the data size of medical images
is relatively small due to the difficulty in collecting data.
Pretrained models, such as image GPT, can be an effective
first-stage feature learning before training on our CT images
[15]. Moreover, more network structures could be studied to

explore better options. Popular image processing examples
include Diffusion and CycleGAN [16] [17]. Last but not
the least, additional features could be developed for this
project to expand its use in clinical research, including
automatic segmentation and classification of lesions and
tumours present in the LDCT scans [18].

The use of LDCT can be accountable in many applica-
tions, for example, image-guided therapy and surgeries [19].
There is still much work that needs to be done before the
LDCT can be fully adopted in clinical settings. However, it
is believed that this work can provide beneficial aid to future
work on related topics.
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