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Abstract—Adversarial attacks present a significant security risk to most modern usages of machine learning, especially in the field of
computer vision. To our knowledge, there are no defense systems that can provide robustness against white-box adversarial attacks
with a computationally efficient run time. For the white-box setting, we propose GPEnsemble, a gaussian pyramid inspired ensemble
defense system combined with an adversarially trained DnCNN denoiser preprocessor. Our system outperforms previous defense
systems (Ensemble Adversarial Training and Fast Adversarial Training) at the strongest tested attack (C&W), with our system retaining
72.6% accuracy at the highest tested perturbation level while the other systems falling to 7.4% and 9.6% accuracy, respectively.

The code for this project is available at: https://github.com/JasonTang99/csc2529_project

1 INTRODUCTION

In recent years, machine learning (ML) models have im-
proved dramatically in their ability to perform visual tasks
on naturally occurring images. However, most ML systems
in use today were designed with minimal consideration
of the exploits a malicious actor could employ against
these systems. One class of these adversarial attacks focuses
specifically on tampering with model integrity such that it
outputs incorrect predictions, potentially in a manner ben-
efiting attackers. Some potential exploits include: falsifying
cheques, bypassing facial recognition systems, and causing
abnormal self-driving car behavior by altering detected road
signs.

These model integrity attacks generally utilize model
weights to perform constrained gradient steps in the input
image space or to solve constrained optimization problems,
both of which generate imperceptibly small perturbations to
input images that cause models to produce erroneous out-
puts. Even in black-box scenarios where attackers have no
access to model weights and architecture, there are methods
that can learn a substitute clone of the target model and
exploit the transferability of adversarial examples to attack
black-box models without knowledge of model architecture
or even access the same training data [1]. This nullifies
many attempts of security through obscurity, causing a
shift towards defenses in gray-box or white-box scenarios
in recent research, where attackers have partial, or even
complete access to model architecture, weights, and training
data.

In our project, we propose and analyze the robustness of
a novel ensemble-based defense system utilizing different
input sizes in the white-box setting.

2 RELATED WORK
2.1 Adversarial Attacks

Attacks can be generated by solving a constrained opti-
mization problem, which minimizes or bounds a distance
metric (e.g. Lo, L2, and L) between the clean image and

adversarial example. The minimization of image distance
encourages imperceptible changes, such that human analy-
sis of adversarial images does not raise concerns.

For standard convolutional neural networks (CNNs), the
Fast Gradient Sign Method (FGSM) presents a simple and
efficient attack that exploits the existing backpropagation
architecture in modern neural networks to efficiently calcu-
late and ascend along the gradient of the loss function with
respect to the input image [2]. This gradient step can also
be repeated iteratively within the constrained space using
Projected Gradient Descent (PGD), and with random nearby
initializations to create more powerful attacks [4]. Carlini
and Wagner (C&W) present another strong attack which
breaks several previously effective defenses by directly
optimizing the constrained optimization problem using a
margin loss [5]. Lastly, the Skip Gradient Method (SGM)
is a recent technique which exploits skip connections in
neural networks with residual connections to pass gradients
through the model more directly [6].

2.2 Ensemble Defenses

To address this, many defenses have been proposed and
defeated in an ongoing arms race within this field. A pop-
ular defense is to smooth out the model gradients to near 0
such that the adversarial gradient steps are no longer useful
[16] [17]. However, these gradient masking techniques only
obfuscate the gradient information, they do not remove the
existence of adversarial images. Attackers can effectively by-
pass this defense by learning a substitute model with useful
gradients which can exploit the transferability of adversarial
examples to attack the masked target model [1]. Another
common defense relies on numerically unstable or non-
differentiable functions such as sigmoids, median filters,
and step functions. However, attackers can simply replace
these problematic layers with a differentiable approxima-
tion, and optimize along the slightly incorrect gradients to
create adversarial examples [9].

As such, some researchers have begun using ensemble-
based methods with the goal of improving model robust-
ness to adversarial examples through diverse ensemble
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Fig. 1. lllustration of our proposed method.

members. One method uses a regularizer term encouraging
orthogonality in non-maximal predictions between ensem-
ble members [10], and another uses different numerical pre-
cisions between members [8]. However, both of these meth-
ods were broken by running PGD until convergence and
by approximating the numerically unstable majority vote
with an average, respectively [7]. A successful black-box
defense is Ensemble Adversarial Training, which utilizes
adversarial examples generated using R+FGSM (a FGSM
variation with a random step) on other ensemble members
to perform adversarial training [3]. This corresponds to the
method attackers used to attack vanilla adversarial training
[1], which likely leads to the superior robustness seen with
this defense. This idea was extended to the white-box setting
with appropriate attack parameter tuning in Fast Adversar-
ial Training [18].

2.3 Denoising Defenses

Many different denoising techniques have been proposed as
a defensive mechanism against adversarial attacks. Tradi-
tional denoising methods such as Gaussian, Bilateral, Non-
local Means, and Total Variation have all proven useful in
removing noise in adversarially perturbed images. Simply
applying defensive denoising with TV and NLM can re-
move major parts of the universal adversarial perturbations
in images and improve classification performance [11]. A
more recent feature denoising [12] method was designed
to incorporate NLM as intermediate blocks in the convolu-
tional network of the classifiers; these denoising blocks can
be trained to directly remove noises caused by adversarial
perturbations on intermediate features.

Deep learning based architectures are also very effective
as denoising preprocessors. Convolutional neural networks
such as Denoising Autoencoders (DAE) and U-Net have
a great capacity for learning and removing adversarial
noise. The deep denoising sparse autoencoder (DDSA) [13]
method intends to learn a representation extracted from
the autoencoder that is robust to adversarial perturbations
by adding a sparsity constraint in the bottleneck phase
to enforce the extraction of only meaningful and relevant
features. However, such bottleneck structures between the
encoder and the decoder might hinder the transmission
of fine details necessary for high-resolution image recon-
struction. A denoising U-net (DUNET) [14] addresses this
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problem by adding lateral connections and incorporating
residual learning. DUNET learns the adversarial noise with
a loss function guided by a high-level representation of the
images. The DnCNN [15] architecture has also seen lots of
success in its capability and efficiency in image denoising.
It is a feed-forward neural network that leverages batch
normalization and residual learning techniques to estimate
the residual in the image, which suggests that it could also
potentially be an effective denoising preprocessor.

3 PROPOSED METHOD
3.1 Gaussian Pyramid Ensemble

We introduce GPEnsemble, a gaussian pyramid inspired
ensemble-based defense system for image classification.
Each ensemble member receives a different resized version
of the input image (see Fig. 1), where the resampling is
done using the same multiplicative scaling factor in each
direction for simplicity. We explored using different input
scaling factors [2.0,1.1], as smaller scales allow for more
ensemble members with better space efficiency.

The motivation behind this ensemble construction is that
the attacker will need to essentially trick each ensemble
member at the same time, where each member is diverse
and difficult to simultaneously fool due to the varied input
sizes. Additionally, downsampling destroys image informa-
tion so attacks may need to attack entire patches of the input
image to target a downsampled model. However, this also
produces a drop in accuracy, which is why we also include
upsampled input images to alleviate this performance loss.

Each input is then passed through a vanilla Resnet [19]
model (18-layer), which is pre-trained on ImageNet and
then finetuned on the associated input size. The resulting
outputs are then combined in the following ways: leftmar-
gin="

o Uniform Average Outputs: A linear baseline averaging
all outputs uniformly.

o Weighted Average Outputs: Performance scaled
weights will likely improve performance on clean
inputs, but could lead to targeted attacks on the
highest performing models.

e Uniform Majority Vote (non-differentiable): Equal
votes introduces a non-differentiable step.

o Weighted Majority Vote (non-differentiable): Better ac-
curacy on clean inputs, but may be more vulnerable.

We choose not to consider any random selection meth-
ods where a single ensemble model is selected to make the
classification decision as it allows attackers to target a single
ensemble member and to simply repeatedly submit the
adversarial attack until the targeted member is inevitably
randomly selected.

3.2 Denoising Preprocessor

Before passing the input images through the ensemble
model, a DnCNN-based denoiser is applied as a preproces-
sor in the first stage of our defensive pipeline. The DnCNN
denoiser was trained with adversarial examples generated
by different attack methods on a range of perturbation
levels, which should remove major parts of the adversarial
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Fig. 2. Comparison of different voting methods. (Ensemble only)

perturbations and restore the original structures in the input
images. As seen in recent literature, deep denoisers can be
quite effective as a defensive measure. We adopted the stock
17-layer DnCNN architecture and cut it down to a 7-layer
model to save training time. The biases in the model are also
disabled as we think it would provide better generalization,
especially on unseen noises.

4 EVALUATION

We examine the robustness of our proposed model with
FGSM and PGD attacks on the L., norm, and with C&W
attacks on the Ly norm. Recent literature generally considers
L limits of [2, 5, 10, 16] pixel value changes in FGSM and
PGD attacks. Since there is little guidance on similar L;
limits, we calculated the Ly norm of the maximal change
in the associated Lo, limit on a (3,32, 32) sized CIFAR-10
image to produce the Ly limits of [0.5, 1.0, 2.0, 3.5] for C&W
attacks.

Additionally, since C&W doesn’t allow the specification
of a L, limit, we instead run the attack with default parame-
ters and measure the L, norm of the perturbations. We only
count an attack as successful if the perturbation is within
the Ly limit and the model prediction changes.

Since voting methods have no definable gradient, we
generate adversarial examples on the associated differen-
tiable substitute and transfer attacks to the target model.

We evaluate our proposed system on both MNIST and
CIFAR10 datasets, and compare against both Ensemble Ad-
versarial Training (black-box) and Fast Adversarial (white-
box) methods, which we will refer to as EnsAdv and Fas-
tAdyv, respectively, on CIFAR10.

5 RESULTS
5.1

In Fig 2 we analyze the performance of only the ensemble
portion (no denoiser) using the different voting methods.

Ensemble

0.03 004 0.05 0.06 00 05 1.0 15 20 25 30 35

epsilon

We note that our non-differentiable voting methods (major-
ity_vote, weighted_vote) generally outperform their differ-
entiable counterparts, especially in the iterative PGD and
C&W attacks. This is likely due to the fact that the more
powerful iterative attacks often demonstrate less transfer-
ability than one-step attacks [3].

TABLE 1
Comparison of different numbers up samplers and down samplers with
a scaling factor of 2 on the FGSM attack. Test accuracies averaged
over all epsilons. (Ensemble only)

dataset | up_samplers ‘ down_samplers | test_acc
0.0 0.0 96.94%
0.0 1.0 97.13%
0.0 2.0 97.65%
0.0 3.0 96.41%
- 1.0 0.0 97.90%
2.0 0.0 98.82%
3.0 0.0 99.15%
1.0 1.0 98.36%
2.0 2.0 98.88%
3.0 3.0 99.01%
0.0 0.0 33.21%
0.0 1.0 36.43%
0.0 2.0 39.91%
0.0 3.0 40.95%
cifar10 1.0 0.0 37.37%
2.0 0.0 39.93%
3.0 0.0 40.34%
1:0 1.0 40.36%
2.0 2.0 44.54%
3.0 3.0 45.48%

In Table 1, we see that upsamplers are generally more
advantageous to have compared to downsamplers. How-
ever, due to the exponential space increase required to use
these upsamplers, we also utilize downsamplers to increase
the ensemble size and robustness.
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Fig. 3. Comparison of denoisers trained with different dataset/architecture (denoiser only)

TABLE 2
Comparing scaling factors of 2.0 and 1.1. Test accuracy averaged over
epsilons. (Ensemble only)

dataset | attack ‘ scaling, up, down ‘ test_acc
1.1,3,3 98.44%
1.1,5,5 98.65%

fgsm
11,77 98.79%
2.0,3,3 99.01%
11,3,3 98.65%
. 1.1,5,5 98.70%

mnist pgd
11,7,7 98.62%
2.0,3,3 99.10%
11,33 67.20%
1.1,5,5 75.99%

w

1.1, 7,7 77.09%
2.0,3,3 81.15%
1.1,3,3 43.25%
1.1,5,5 43.93%

fgsm
11,7,7 45.25%
2.0,3,3 45.48%
11,33 47.78%
cifarl0 | pgd L1 55 49.89%
11,7,7 51.86%
20,3,3 40.62%
11,3,3 37.91%
1.1,5,5 45.95%

w
11,7,7 47.17%
2.0,3,3 46.98%

We also considered lowering the scale factor from 2.0 to
1.1, with results in Table 2. The lower scaling factor allows
the addition of more upsamplers and downsamplers before

running into memory space constraints or complete loss of
image information. The results show that using a factor of
2.0 will always dominate a factor of 1.1 when both have the
same ensemble member counts, but using the ability to have
more ensemble members in 1.1 produces better results in the
more challenging CIFAR10 dataset.

5.2 Denoising

For evaluating the denoising performance, we were primar-
ily focusing on the CIFAR10 dataset as it is more represen-
tative in real-world scenarios. Our custom training dataset
contains adversarial examples generated by FGSM and PGD
methods on a range of [, norms, and additional noisy
examples with added Gaussian noise. It is worth noting that
we did not include C&W examples, as images perturbed
by the C&W attack have no perceivable noise and are
structurally similar to the original images (See Table 3 and
Fig. 4). Therefore, training the denoisers on these examples
will give us no benefit in learning and image reconstruction
performance.

We conducted ablation studies by comparing denoiser
models trained on different combinations of training exam-
ples and evaluated their respective PSNR, SSIM value in
image restoration, and classification accuracy in each attack
scenario. We have discovered that training with gaussian
noise examples generally leads to improved denoising and
generalization performance. As an additional comparative
analysis, we have compared the denoising performance of
our DnCNN model with a 10-layer convolutional autoen-
coder (ConvDAE) [20] trained on the same dataset.

In Table 3 and 4, we see that the DnCNN denoiser
trained with FGSM, PGD, and gaussian noise examples had
the best overall performance under FGSM and PGD attacks,
averaging a 17.9% and 15.2% accuracy increase compared
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Fig. 4. Sample adversarial images and denoised outputs

to the baseline model without a denoiser. We also observed
that the effect of C&W attack was alleviated almost com-
pletely with all 4 denoisers, suggesting that image smooth-
ing can be the major factor in reverting the perturbations
in C&W attacked images. In Fig. 4, we can visually observe
that denoisers trained with mixed training examples yielded
the best overall image reconstruction quality. Overall, the
DnCNN model achieved better defensive denoising perfor-
mance compared to the ConvDAE model on the CIFAR10
dataset, while being more lightweight and easy to train.

5.3 Denoiser + Ensemble

The combination of the denoiser and ensemble compo-
nents produces significant improvements over simply the
ensemble model, particularly at high perturbations and
with stronger attacks (See Fig. 5). We note up to a 40.8%
and 21.0% accuracy improvement in MNIST and CIFARI0,
respectively, in the C&W attack.

Lastly, in Fig. 6, we compare the performance of our
strongest ensemble models across both scaling factors
against Ensemble Adversarial Training (EnsAdv) and Fast

TABLE 3
Average PSNR and SSIM values of restored images in FGSM (I,
eps=0.0625), PGD (-, eps=0.0625), and C&W attacks (l2, eps=3.5)

on CIFAR-10
| Attack | Denoiser | PSNR (dB) | SSIM |
DnCNN - (fgsm+pgd+gaussian) 31.816 0.974
DnCNN - (fgsm+pgd) 30.648 0.965
FGSM DnCNN - (gaussian) 25.857 0.888
ConvDAE - (fgsm+pgd+gaussian) 28.883 0.948
Baseline (No Denoiser) 24.207 0.843
DnCNN - (fgsm+pgd+gaussian) 33.626 0.979
DnCNN - (fgsm+pgd) 32.072 0.971
PGD DnCNN - (gaussian) 32.074 0.970
ConvDAE - (fgsm+pgd+gaussian) 33.398 0.979
Baseline (No Denoiser) 28.730 0.931
DnCNN - (fgsm+pgd+gaussian) 39.656 0.994
DnCNN - (fgsm+pgd) 39.764 0.994
C&W DnCNN - (gaussian) 36.873 0.987
ConvDAE - (fgsm+pgd+gaussian) 44.432 0.998
Baseline (No Denoiser) 00 0.999
TABLE 4
CIFAR-10 classification accuracy averaged over epsilons (denoisers
only)
Dlenioisai Test Accuracy
FGSM PGD C&W
DnCNN - (fgsm+pgd-+gaussian) 41.33% | 36.82% | 66.89%
DnCNN - (fgsm+pgd) 35.55% | 37.48% | 65.92%
DnCNN - (gaussian) 25.93% | 27.12% | 65.04%
ConvDAE - (fgsm+pgd-+gaussian) 36.5% | 31.27% | 67.38%
Baseline (No Denoiser) 23.46% | 21.68% | 16.16%

Adpversarial Training (FastAdv). We can see that FastAdyv,
which improves upon EnsAdyv, outperforms our method on
both FGSM and PGD attacks. However, the combination
of our denoiser and ensemble steps is able to outperform
both FastAdv and EnsAdv by up to 63% at the maximum
perturbation level.

6 CONCLUSION AND FUTURE WORK

We have shown that the combination of the ensemble de-
fense system and an adversarially trained denoising pre-
processor provides a robust layer of protection against ad-
versarial attacks. Our system was able to outperform the
previously proposed ensemble-based defense system (En-
semble Adversarial Training) in all attacks tested, and edge
over the Fast Adversarial Training method in the strongest
tested C&W attack.

Our system’s capability can also be extended to more
complex models and larger datasets, such as ImageNet.
There is also the opportunity to explore non-differentiable
up and down sampling methods for the image resizing
step to add another layer of non-differentiability against
potential attacks. Additionally, adversarial training could
potentially be incorporated into the training we performed
in each ensemble member.
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