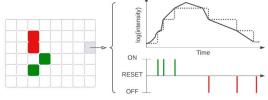

# Neuronal models for spike-coded depth estimation from event camera data

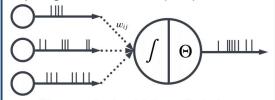
Martin D. Pham

Department of Computer Science, University of Toronto


#### Motivation

· Epipolar Stereo Depth Estimation:



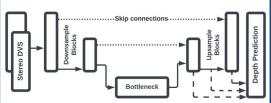

Given a point X from the scene, captured on two rectified sensors as pixels x left and x right, recover the depth Z for that X.

· Dynamic Vision Sensor (DVS):



Every pixel is its own neuron with individual voltages (intensities). An 'ON' event occurs when the log intensity increases by a fixed threshold, an 'OFF' event occurs when it decreases. Each pixel thus codes its photon intensity as a pair of polarized spike-trains in time.

Spiking Neural Networks (SNN):




A spiking neural network takes spike-trains as inputs, integrates the weighted spikes as a continuous value of voltage in time governed by a neuronal model, and applies a Heaviside activation function to the voltage state.

How does neuronal model effect results?

### **Related Work**

StereoSpike [4] is a U-Net (with residual bottleneck) convolutional SNN using surrogate gradient descent training, applying deep learning techniques to stereo DVS data [6].

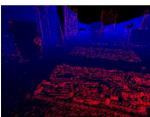


But chosen neuronal models lack biological features (i.e. spike coding capacity), are linear

## **Changing Neuronal Model for Residual Blocks**

We leave the architecture and learning unchanged except for the neuronal model within the residual bottleneck blocks by replacing the parametric leakyintegrate-and-fire (PLIF) neuronal model with voltage V:

$$V[t] = V[t-1] + \frac{1}{\tau} \big( X[t] - (V[t-1] - V_{reset}) \big)$$
 if  $V > V_{threshold}$ , then  $V \leftarrow V_{reset}$  where 
$$V_{reset} := \text{reset voltage after spike} \qquad X[t] := (\text{integrated}) \text{ input at time } t$$
 
$$V_{threshold} := \text{voltage spike threshold} \qquad \frac{1}{\tau} := Sigmoid(w), w \text{ a learned parameter}$$


• Consider the quadratic integrate-and-fire (QIF) model:

$$V[t] = V[t-1] + \frac{1}{\tau} \big( X[t] + a_0(V[t-1] - V_{rest}) (V[t-1] - V_c) \big)$$
 if  $V > V_{threshold}$ , then  $V \leftarrow V_{reset}$  where 
$$V_{rest} \coloneqq \text{resting potential of membrane} \qquad \qquad \tau \coloneqq \text{membrane time constant}$$
 
$$V_{threshold} \coloneqq \text{neuron threshold voltage} \qquad \qquad 0 < a_0 \coloneqq \text{quadratic term parameter}$$
 
$$V_{reset} \coloneqq \text{neuron reset voltage} \qquad \qquad X[t] \coloneqq \text{(integrated) input at time } t$$
 
$$V_c \coloneqq \text{critical voltage threshold by short current pulse}$$

· Both dynamical systems are Class I excitatory neuronal models (capable of firing low-frequency spikes when input is weak), but any Class I system describable by smooth ODEs may be transformed into the QIF form by a change of basis of voltage scale and constant current [3].

## **Experimental Results**





Ground Truth from LIDAR [6]

| reconstructed raw image |     |  |  |  |
|-------------------------|-----|--|--|--|
|                         | 100 |  |  |  |
|                         |     |  |  |  |

PLIF depth estimation

0.191

OFF events.

Note that spike activities have been overlayed in order to visualize ON/

181

1.302

0.189

QIF depth estimation

The QIF model is able to perform similarly accurate to the PLIF, with a small decrease in the training time per epoch.

|   | s during training  — pif train less — pif test less — qf train less — qf train less — qf test less | 14-                                                     | e depth error during training  pilf train depth, en  pilf train depth, en  qt train, depth, en  qt test, depth, erre |
|---|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| à |                                                                                                    | Average depth error or |                                                                                                                      |
| ( | ~~~~                                                                                               | " Kinner                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                               |

#### References

- [1] Furmonas et. al, Analytical Review of Event-Based Camera Depth Estimation Methods and Systems, Sensors, 2022
- [2] Gallego et. al, Event-Based Vision: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022
- [3] Izhikevich et. al, Which model to use for cortical spiking neurons?, IEEE Transactions on Neural Networks, 2004
- [4] Rançon et. al, StereoSpike: Depth Learning with a Spiking Neural Network, https://arxiv.org/abs/2109.13751, 2021
- [5] Steffen et. al, Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms, Frontiers in Neurorobotics, 2022
- [6] Zhu et. al, The Multivehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception, IEEE Robotics and Automation Letters, 2018