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Time-of-Flight Imaging
lidar, single-photon imaging, non-line-of-sight imaging



Raskar et al. [2011]

transient imaging (a.k.a. femtophotography)



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging

• Imaging through scattering media

overview



echolocation

speed of sound in air: 343 meters / sec
in water: 1480 meters / sec



Light takes 1.255 seconds to travel from the earth to the moon

speed of light in a vacuum: 299,792,458 meters / sec
(Light travels approximation 1 MILLION times faster than sound!)



transient imaging

speed of light in a vacuum: 299,792,458 meters / sec
(Light travels approximation 1 MILLION times faster than sound!)



direct and indirect time-of-flight sensors 
for transient imaging

Velodyne VLS-128 Microsoft Kinect v2
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direct and indirect time-of-flight sensing

Velodyne VLS-128

Direct time-of-flight sensor
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direct and indirect time-of-flight sensing

Microsoft Kinect v2
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transient sensing technologies
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Seeing through Walls
[Adib et al., 2015]
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Positron Emission Tomography
(PET) Scan

Terahertz Time-gated Imaging 
[Redo-Sanchez et al., 2015]
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• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging

• Imaging through scattering media

overview
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Applications

Autonomous Navigation
Image by Wikimedia Commons

Space Station Docking
Image by NASA

3D Mapping
Image by LIDAR-America

Optical Communications
Image by Siasat Daily

Biomedical Imaging
Image by Washington University 

Consumer Electronics (2020 iPad Pro)
Video by Tim Fields 39
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International Laser Ranging Service (ILRS)

Retroreflector

Lunar Laser Ranging (LLR)

- Location of Lunar Retroreflector
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scene

single-photon avalanche diode (SPAD)

SPAD properties:
• Each photon timestamped with 60 ps

precision
• Measure up to 10 million photons a second
• No electronic read noise



LinoSPAD from FastTree 3D
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SPAD output regular image
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• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging

• Imaging through scattering media

overview
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1. Light efficiency / photon sensitivity (determines range)

2. High-speed time stamping (determines accuracy)

3. Computational algorithms (determines range and accuracy)

Challenges

53



1. Light efficiency / photon sensitivity (determines range)

• intensity of returned light falls off with 1/d2, i.e. very quickly!

• emit as much light as possible - fundamentally limited by eye 
safety (in most applications)

• detect as much light as possible, ideally individual photons

Challenges

54



2. High-speed time stamping (determines accuracy)

• speed of light is ~300,000,000 m/s

• 1 m = 3.3 ns; 1 cm = 33 ps; 1 mm = 3.3 ps

• need picosecond-accurate time-stamping à usually high-
end electronics, but also done with ASICs, FPGAs

Challenges

55



3. Computational algorithms (determines range and 
accuracy)

• robust depth estimation from single photon per pixel!

Kirmani et al. “First-photon 
Imaging”, Science 2014

conventional method first-photon imaging

Challenges

56



(Single-photon) Avalanche Photodiodes
Linear mode (i.e., avalanche photodiode or APD): 
acts like a conventional photodiode with extremely high gain or amplification
time resolution >300 ps – 10 ns

Geiger mode (i.e., single-photon avalanche photodiode SPAD):
500x more sensitive, i.e. single-photon sensitive
time resolution ~50 ps

image by Princeton LightwaveSemiconductor devices 57
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SPAD measurements
(256 x 256 x 1536)

Intensity image
(1024 x 1024)

Measurements

Lindell et al., SIGGRAPH 2018

Noisy <1 photon per pix., low spatial resolution clean, high spatial resolution

How to fuse information from both?
59
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SPAD measurements
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SPAD measurements
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CNN Architecture for Depth Estimation
Guided upsampling by sensor fusion
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Lindell et al., SIGGRAPH 2018
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vertical scanline

(note: laser illumination is too weak to observe visually while scanning under ambient light)

scan rate: 20 Hz lights on

64



scan rate: 20 Hz lights off

(captured at 240 FPS)

Lindell et al., SIGGRAPH 2018
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Intensity image

SPAD measurements (20 Hz) Average per spatial position
0.64 Signal Detections
0.87 Background Detections 

y t

x

Lindell et al., SIGGRAPH 2018
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Intensity image Log-matched filter [Rapp and Goyal 2017]

Denoised (w/o intensity) Denoised (w/ intensity) Denoised + Guided upsampling
67



Why is Deep Learning Useful Here?

• fusing complementary information from different sensors is not 
straightforward, but we can learn the mapping

• idea extends to other sensors: radar, thermal, …

• inverse method is fully differentiable à can attach higher-level 
tasks, such as classification (car, pedestrian, biker, …), and train 
end-to-end from photon counts to class label or control

68



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging (part 1)

• Imaging through scattering media

overview
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40 cm (2.7 ns)

24 cm
(4.3 ns – 2.7 ns)
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laser detector

scanning mirrors
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resolution: 128 x 128
area: 2 m × 2 m
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Lindell et al., SIGGRAPH 2019
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Dimensions: 2 m x 2 m x 1.5 m

scene photo reconstruction

Lindell et al., SIGGRAPH 2019
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wa
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hidden 
objectconfocal sampling

- simplified NLOS mathematical model
- enables efficient NLOS 

reconstruction equivalent to one-way 
propagation at half-speed
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NLOS image formation mode:

⌧ = A⇢
measurements unknown volume

n3 ⇥ 1n3 ⇥ 1
transport matrix

n3 ⇥ n3

PROBLEM: A extremely large in practice 
(e.g., for      = 100,       has 1 trillion elements)An

Backpropagation [Velten 12, Buttafava 15]

Flops: O(n5)

O(n3)Memory: 

Runtime:  Approx. 10 min.

Iterative Inversion [Gupta 12, Heide 13]

Flops: 

Memory: O(n5)
O(n5) per iter.

Runtime:  > 1 hour
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measurements unknown volumeblur kernel

Confocal NLOS image formation mode:

⌧ = a ⇤ ⇢
n⇥ n⇥ n n⇥ n⇥ nn⇥ n⇥ n

NLOS image formation mode:

⌧ = A⇢
measurements unknown volume

n3 ⇥ 1n3 ⇥ 1
transport matrix

n3 ⇥ n3

Backpropagation [Velten 12, Buttafava 15]

Flops: O(n5)

O(n3)Memory: 

Iterative Inversion [Gupta 12, Heide 13]

Flops: 

Memory: O(n5)
O(n5) per iter.

Runtime:  Approx. 10 min.

Runtime:  > 1 hour



measurements unknown volumeblur kernel

Confocal NLOS image formation mode:

3D Deconvolution (with Light Cone Transform)
[O’Toole et al. 2018]

Flops: 

O(n3)Memory: 

O(n3 log(n))

⌧ = a ⇤ ⇢
n⇥ n⇥ n n⇥ n⇥ nn⇥ n⇥ n

NLOS image formation mode:

⌧ = A⇢
measurements unknown volume

n3 ⇥ 1n3 ⇥ 1
transport matrix

n3 ⇥ n3

Backpropagation [Velten 12, Buttafava 15]

Flops: O(n5)

O(n3)Memory: 

Iterative Inversion [Gupta 12, Heide 13]

Flops: 

Memory: O(n5)
O(n5) per iter.

Runtime:  Approx. 10 min.

Runtime:  > 1 hour

Runtime:  < 1 second



measurements

O’Toole et al., Nature 2018



measurements

Step 1: resample
and attenuate
along    -axis

O’Toole et al., Nature 2018



measurements

Step 2: 3D 
convolution

Step 1: resample
and attenuate
along    -axis

*

convolution kernel

inverse filter

O’Toole et al., Nature 2018



measurements

Step 2: 3D 
convolution

Step 1: resample
and attenuate
along    -axis

*

convolution kernel

inverse filter

O’Toole et al., Nature 2018

recovered volume

Step 3: resample
and attenuate
along    -axis



laser spot
confocal NLOS system

hidden object

occluder



1.25 meters



laser spot

x0

y0





NLOS image formation model:

⌧ = A⇢
measurements unknown volume

n3 ⇥ 1n3 ⇥ 1
transport matrix
n3 ⇥ n3

Backprojection [Velten 12, Buttafava 15]

Flops: O(n5)

O(n3)Memory: 

Runtime:  Approx. 10 min.

Iterative Inversion [Gupta 12, Wu 12, Heide 
13]

Flops: 

Memory: O(n5)
O(n5) per iter.

Runtime:  > 1 hour

3D Deconvolution (with Light-Cone Transform)
[O’Toole et al. 2018]

Flops: 

O(n3)Memory: 

O(n3 log(n))

Runtime:  < 1 second

measurements unknown volumeblur kernel
n⇥ n⇥ n n⇥ n⇥ nn⇥ n⇥ n

Confocal scanning and Light-Cone Transform:

Assumption:
• Isotropic scattering (only diffuse or 

retroreflective objects)
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• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging (part 2)

• Imaging through scattering media

overview
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z

x

confocal measurements

x

wavefield

wall (z = 0)

hidden object

t

image formation model
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z

x x

t

general solution (time reversal)

wall (z = 0)

hidden object

wavefield confocal measurements
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general solution (time reversal)
1. approximate wave equation 

with finite differences

2. solve for previous timestep

3. repeatedly update     at all grid 
cells 

finite-difference time-
domain method
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general solution (time reversal)
1. approximate wave equation 

with finite differences

2. solve for previous timestep

3. repeatedly update       at all grid 
cells 

finite-difference time-
domain method

Slow to get t=
0 at 

high-resolution!
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z

x x

t

frequency–wavenumber (f–k) Migration

wall (z = 0)

hidden object

wavefield confocal measurements

FLOPS: O(𝒏𝟑 log 𝒏)

117



x

y

t

Captured Measurements
Lindell et al., SIGGRAPH 2019



x

y

t

Lindell et al., SIGGRAPH 2019



f-k Migration

Measurements (z=0) Spectrum Hidden Volume (t=0)

Resample

Interpolated Spectrum
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f-k Migration
Express wavefield as function of measurement spectrum (plane wave decomposition)

wavefield Fourier 
transform of 
measurements

Set t=0 to get migrated solution

Almost an inverse Fourier Transform!
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f-k Migration
Set t=0 to get migrated solution

Almost an inverse Fourier Transform!

Use dispersion relation1 to perform substitution of variables 

1Georgi, Howard. The physics of waves. Englewood Cliffs, NJ: Prentice Hall, 1993.
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Use dispersion relation1 to perform substitution of variables 
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Use dispersion relation1 to perform substitution of variables 
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Use dispersion relation1 to perform substitution of variables 

The migrated solution is an inverse Fourier Transform!

Resample
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f–k Migration

x

y

z

Dimensions: 2 x 2 m
Exposure: 180 min
Reconstruction time: ~90 sec (CPU) Lindell et al., SIGGRAPH 2019



Reconstruction Comparison



hardware prototype
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hardware prototype
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Hardware Prototype
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real-time scanning

Framerate: 4 Hz
Resolution: 32 x 32
Dimensions: 2 m x 2 m x 2 m
Reconstruction time: ~1 s per frame

Lindell et al., SIGGRAPH 2019



Outlook

hidden scene Recovered surface

Directional Light-Cone Transform

[Young et al., CVPR 2020]
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Outlook
Keyhole NLOS Imaging

[Metzler et al., IEEE TCI 2021] 134



• Time-resolved imaging

• Single-photon avalanche diodes (SPADs)

• Single-photon lidar

• Non-line-of-sight imaging (part 2)

• Imaging through scattering media

overview



Time-resolved active imaging

Challenges

• very few returning photons
• information is ‘scrambled’ by scattering

timep
ho

to
n 

co
un

t



light enters 
here and 
begins
scattering

ballistic 
regime

increased 
scattering

random 
walk

Imaging through scattering media
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light enters 
here and 
begins
scattering

ballistic 
regime

increased 
scattering

random 
walk

Imaging through scattering media

mean free path 138



light enters 
here and 
begins
scattering

ballistic 
regime

increased 
scattering

random 
walk

Imaging through scattering media

transport mean free path 139



> 6 transport mean free paths (TMFP)

Imaging through scattering media

this work
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to
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ts

time

[Wang ‘91], [Redo-Sanchez ‘16], [Satat ‘18], …

ballisti
c
photo
ns

scattere
d
photons

Related Work

Ballistic imaging
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Ballistic imaging

p
ho

to
n 

co
un

ts

time

[Wang ‘91], [Redo-Sanchez ‘16], [Satat ‘18], …

ballisti
c
photo
ns

scattere
d
photons

Related Work

• very few returning photons 
in highly scattering media 
(< 1 in 1012)

• need to know gating 
position a priori
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Ballistic imaging

p
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time

[Wang ‘91], [Redo-Sanchez ‘16], [Satat ‘18], …

ballisti
c
photo
ns

scattere
d
photons

Related Work

[Satat ‘16]

[Lyons ’19]

Diffuse Optical Tomography

[Hajihashemi ‘12]

2D 3D

• very few returning photons 
in highly scattering media 
(< 1 in 1012)

• need to know gating 
position a priori
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Ballistic imaging

p
ho

to
n 

co
un

ts

time

[Wang ‘91], [Redo-Sanchez ‘16], [Satat ‘18], …

ballisti
c
photo
ns

scattere
d
photons

Related Work

[Satat ‘16]

[Lyons ’19]

Diffuse Optical Tomography

[Hajihashemi ‘12]

2D 3D

• very few returning photons 
in highly scattering media 
(< 1 in 1012)

• need to know gating 
position a priori

• Both sides of media

• 2D reconstruction

• 3D many detectors, 
computationally expensive
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pulsed
laser

hidden 
object

single-
photon 
detector

scanning 
mirrors

~6 
TMFP

Assumptions:
- object at a distance behind scattering media
- scattering media is static
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pulsed
laser

hidden 
object

single-
photon 
detecto
r

~6 
TMFP

gated out

hidden object

scannin
g 
mirrors
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Results

hidden object captured measurements
(0.6 m × 0.6 m × 3.3 ns)

𝑥

𝑦

𝑡

total acquisition time: 1 min. (60 ms/sample)



Results

captured measurements reconstruction (50 ms)
(0.6 m × 0.6 m × 0.5 m)

𝑥

𝑦

𝑧

𝑥

𝑦

𝑡

total acquisition time: 1 min. (60 ms/sample)



Method
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Method diffusion
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Method diffusion



Method diffusion

Need evaluate all paths



Method
detector location

laser location

non-line-of-sight imaging

[Lindell  ‘19]

[O’Toole ‘18]



Efficient inversion 
if:

non-line-of-sight imagingMethod
detector location

laser location



Method diffusion
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Method
spot size = 2 cm 
diameter

D ~ 30 – 80 cm

confocal: illuminate and 
image here 156



Method
Approximation:
Approximate measured light as scattering 
back to the same spot.

Error ~ (spot size)2 / (2 * distance) << 1 cm

spot size = 2 cm 
diameter

D ~ 30 – 80 cm

confocal: illuminate and 
image here 157



Method
Approximation:
Approximate measured light as scattering 
back to the same spot.

Error ~ (spot size)2 / (2 * distance) << 1 cm

spot size = 2 cm 
diameter

D ~ 30 – 80 cm

confocal: illuminate and 
image here

Can use efficient NLOS 
inversion!

diffusion kernels NLOS model

measurements
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Reconstruction

measurements intermediate result reconstruction

diffusion filter
*

inverse filter

inverse light transport

x

y

t

x

y
t
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Hardware

scattering media

scanning 
area

hidden 
objectimagin

g
system
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Hardware

scattering media

scanning 
area

hidden 
objectimagin

g
system
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Hardware
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Results

measurements Lindell et al., Nat. Commun. 2020
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Results

reconstruction Lindell et al., Nat. Commun. 2020



Results

reconstruction Lindell et al., Nat. Commun. 2020



traffic 
cones

Results

reflective mannequin diffuse letter

Lindell et al., Nat. Commun. 2020
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Results

Lindell et al., Nat. Commun. 2020



Conclusion

• Time-resolved imaging + closed-form 
solution for imaging through scattering 
media

• future work

• embedded, anisotropic media

• priors, machine learning
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• Many applications for time-of-flight imaging
• Lidar

• Non-line-of-sight
• Transient imaging
• Imaging through scatter

• New capabilities through combining emerging sensors with computation!

concluding remarks

171



Representing & processing signals with neural networks

Next time…
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