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Announcements

• HW5 due Wednesday 2/11
• HW6 is out

• No class next week (reading week)
• Proposal due in 2.5 weeks!

• See website for all office hours/problem session dates



Overview

• Brief review of deconvolution with inverse/Wiener filtering

• A Bayesian perspective of inverse problems
• Image priors/regularization and total variation

• The ADMM method
• Image deconvolution with ADMM
• Compressive imaging

Must read: course notes on Deconvolution and Compressive Imaging!
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Image Deconvolution – Brief Review

?

Given: blurry & noisy image Desired: sharp & noise-free image



Image Deconvolution – Brief Review

• Image formation model: 𝑏 = 𝑐 ∗ 𝑥 + 𝜂

2D measurements additive noise

2D target imageknown 2D convolution kernel



Image Deconvolution – Brief Review

• Image formation model: 𝑏 = 𝑐 ∗ 𝑥 + 𝜂

𝑏 = ℱ!" ℱ 𝑐 ⋅ ℱ 𝑥 + 𝜂

𝑏 = 𝑐 ∗ 𝑥 ⇔ 𝒃 = 𝑪𝒙 𝑪 ∈ ℝ#×#, 𝒃, 𝒙 ∈ ℝ#

1𝑥%& = ℱ!" ℱ 𝑏
ℱ 𝑐

1𝑥'& = ℱ!" ℱ 𝑐 (

ℱ 𝑐 ( + 21 𝑆𝑁𝑅
⋅
ℱ 𝑏
ℱ 𝑐

• Convolution theorem:

• Inverse filtering:

• Wiener filtering:

• Duality of “signal processing” and “algebraic” interpretation:



Image Deconvolution – Inverse Filtering
Ground Truth
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Image Deconvolution – Wiener Filtering
Ground Truth
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• Problem: this is an ill-posed inverse problem, i.e., there are 

infinitely many solutions that satisfy the measurements

• Need some way to determine how “desirable” any one of 
these feasible solutions is à need an image prior

Image Deconvolution
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A Bayesian Perspective of Inverse Problems

𝒃 = 𝑨𝒙 + 𝜼,

𝜼) ∼ 𝒩 0, 𝜎(𝒙) ∼ 𝒩 𝒙) , 0 ,
𝒃) ∼ 𝒩 𝑨𝒙 ) , 𝜎(

• Image formation model:

• Interpret as random 
variables:

• Probability of 
observation 𝑖:

𝑝 𝒃)|𝒙) , 𝜎 =
1
2𝜋𝜎(

𝑒!
𝒃!! 𝑨𝒙 !

"

(-"

𝑝 𝒃|𝒙, 𝜎 =C
)."

/
𝑝 𝒃)|𝒙) , 𝜎 ∝ 𝑒!

𝒃!𝑨𝒙 "
"

(-"
• Joint probability of 

all observations:

𝒃 ∈ ℝ/ , 𝒙 ∈ ℝ#,𝑨 ∈ ℝ/×#



A Bayesian Perspective of Inverse Problems

𝑝 𝒙|𝒃, 𝜎 =
𝑝 𝒃|𝒙, 𝜎 𝒑 𝒙

𝑝 𝒃
∝ 𝑝 𝒃|𝒙, 𝜎 𝑝 𝒙

𝒙/01 = arg min2 − log 𝑝 𝒙|𝒃, 𝜎

= arg min2 − log 𝑝 𝒃|𝒙, 𝜎 − log 𝑝 𝒙

• Bayes’ rule:

• Maximum-a-posterior (MAP) solution:

posterior image formation model prior

= arg min2
1
2𝜎( 𝒃 − 𝑨𝒙 (

( +Ψ 𝒙



A Bayesian Perspective of Inverse Problems

= arg min𝒙
1
2𝜎( 𝒃 − 𝑨𝒙 (

( +Ψ 𝒙

data fidelity term regularization term

𝒙/01

Ψ 𝒙 = −log 𝑝 𝒙• Terminology:

regularizer prior
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Examples of Image Priors / Regularizers
starsblurry stuff

Promote smoothness! Promote sparsity!

Ψ 𝒙 = 𝒙 "Ψ 𝒙 = ∆𝒙 (

Laplace operator

“natural” image

Ψ 𝒙 = TV 𝒙

Promote sparse gradients!



Total Variation (TV)
express (forward finite difference) 
gradient as convolution!

𝑫2𝒙 = 𝑑2 ∗ 𝑥, 𝑑2 =
0 0 0
0 −1 1
0 0 0

𝑫3𝒙 = 𝑑3 ∗ 𝑥, 𝑑3 =
0 0 0
0 −1 0
0 1 0𝒙

-0.3 0.3



better: isotropic

Total Variation (TV)
easier: anisotropic

𝑫0𝒙 1
2 + 𝑫3𝒙 1

2
𝑫0𝒙 1

2 + 𝑫3𝒙 1
2

0 0.3

𝒙



Total Variation (TV)
• Examples are mostly black, indicating that gradient magnitudes 

are close to 0 à natural images have sparse gradients!

• This intuition is well-captured by the TV pseudo-norm, either 
anisotropic or isotropic:

TV45!67897:!; 𝒙 = 𝑫2𝒙 $ + 𝑫3𝒙 $
=8
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Total Variation (TV)

The TV pseudo-norm is one of the most popular regularization 

schemes for natural images!

Extensions to make it more general or applicable for other data: 
• Hyper-Laplacian: Levin et al. 2009, Krishnan & Fergus 2009

• Total generalized variation: Bredies et al. 2009

• Frobenius norm of Hessian: Lefkimmiatis et al. 2003

• …



How to solve inverse problem that 

use these regularizers?



Solving Regularized Inverse Problem

minimize2
1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝒙

weight of regularizer

• Practical #1 go-to solution: Adam solver implemented in PyTorch

• 3 simple steps, will explore in problem session & homework:
1. Implement evaluation of loss function
2. Set hyperparameters, including learning rate
3. Run

• The “fine print”: convenient but doesn’t always converge well

• Objective or “loss” function 

of general inverse problem:
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minimize
x{ }

1
2
b − Ax 2

2 + λΓ x( )

Regularized Image Reconstruction

some image prior, such as     
norm or others ℓ1

data fidelity 
term



 

minimize
x{ }

1
2
b − Ax 2

2

f (x )
! "# $#

+ λΓ z( )
g(z )
%

subject to Kx − z = 0

Regularized Image Reconstruction

• split into two parts à mathematically equivalent



Regularized Image Reconstruction

 

minimize
x{ }

1
2
b − Ax 2

2

f (x )
! "# $#

+ λΓ z( )
g(z )
%

subject to Kx − z = 0

• Lagrangian



Lρ x, z, y( ) = f (x)+ g(z)+ yT Kx − z( ) + ρ
2
Kx − z 2

2

Regularized Image Reconstruction

Optimal if all partial derivatives are zero!

• Lagrangian



Lρ x, z, y( ) = f (x)+ g(z)+ yT Kx − z( ) + ρ
2
Kx − z 2

2

Regularized Image Reconstruction

• Lagrangian

Also implies:



Lρ x, z, y( ) = f (x)+ g(z)+ yT Kx − z( ) + ρ
2
Kx − z 2

2

Regularized Image Reconstruction

• Lagrangian

Also implies:



Lρ x, z, y( ) = f (x)+ g(z)+ yT Kx − z( ) + ρ
2
Kx − z 2

2

Regularized Image Reconstruction

• Lagrangian

Also implies:



Regularized Image Reconstruction



Lρ x, z, y( ) = f (x)+ g(z)+ yT Kx − z( ) + ρ
2
Kx − z 2

2

Regularized Image Reconstruction

• Augmented Lagrangian



Lρ x, z, y( ) = f (x)+ g(z)+ yT Kx − z( ) + ρ
2
Kx − z 2

2

Regularized Image Reconstruction

• Augmented Lagrangian

We add quadratic penalty: improves convergence
properties compared to standard Lagrangian

⍴ is called the “penalty parameter” (see Boyd 2011)



Regularized Image Reconstruction

• Given by some algebraic manipulation (easier form to work 
with)

Where u = y/⍴ is the scaled dual variable

• Scaled dual form of the augmented Lagrangian



x← prox ⋅ 2,ρ
v( ) = argmin

x{ }
Lρ x, z, y( ) = argmin

x{ }

1
2
Ax − b 2

2 + ρ
2
Kx − v , v = z − u

z← proxΓ ,ρ v( ) = argmin
z{ }

Lρ x, z, y( ) = argmin
z{ }

λΓ z( ) + ρ
2
v − z , v = Kx + u

u← u + Kx − z

Regularized Image Reconstruction

• iterative updates - ADMM

repeat until converged



x← prox ⋅ 2,ρ
v( ) = argmin

x{ }
Lρ x, z, y( ) = argmin

x{ }

1
2
Ax − b 2

2 + ρ
2
Kx − v , v = z − u

z← proxΓ ,ρ v( ) = argmin
z{ }

Lρ x, z, y( ) = argmin
z{ }

λΓ z( ) + ρ
2
v − z , v = Kx + u

u← u + Kx − z

Regularized Image Reconstruction

• iterative updates - ADMM

repeat until converged



prox ⋅ 2,ρ
v( ) = argmin

x{ }

1
2
Ax − b 2

2 + ρ
2
Kx − v

Regularized Image Reconstruction

… see notes ...



prox ⋅ 2,ρ
v( ) = argmin

x{ }

1
2
Ax − b 2

2 + ρ
2
Kx − v

Regularized Image Reconstruction

• x-update: solve
• symmetric, positive definite matrix à conjugate gradient method

… see notes ...

 

prox ⋅ 2,ρ
v( ) = AT A + ρKTK

A!
" #$$ %$$

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

ATb + ρKTv
b&

" #$ %$

⎛
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ADMM for Image Deconvolution with TV
𝐿9 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 + 9

(
𝑲𝒙 − 𝒛 + 𝒖 (

( + 9
(
𝒖 (

(

𝐿9 𝒙, 𝒛, 𝒖

=
1
2 𝑪𝒙 − 𝒃 (

( + 𝜆 𝒛 " +
𝜌
2 𝑫𝒙 − 𝒛 + 𝒖 (

( +
𝜌
2 𝒖 (

(

𝑪 ∈ ℝ#×#

𝒛, 𝒖 ∈ ℝ(#

𝑫 =
𝑫2
𝑫:

∈ ℝ(#×#

𝒙 ∈ ℝ# unknown sharp image

slack/dual variable, twice the size of 𝒙! 

finite difference gradients, horizontal & vertical 

circulant convolution matrix for known kernel 𝑐

Generic:

Deconv:



ADMM for Image Deconvolution with TV

𝒙 ← prox ⋅ ",9 𝒗 = arg min2
1
2 𝑪𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒗 (

(, 𝒗 = 𝒛 − 𝒖

𝒛 ← prox ⋅ #,9 𝒗 = arg min= 𝜆 𝒛 " +
𝜌
2 𝒗 − 𝒛 (

(, 𝒗 = 𝑫𝒙 + 𝒖

while not converged:

𝐿9 𝒙, 𝒛, 𝒖 =
1
2 𝑪𝒙 − 𝒃 (

( + 𝜆 𝒛 " +
𝜌
2 𝑫𝒙 − 𝒛 + 𝒖 (

( +
𝜌
2 𝒖 (

(





ADMM for Image Deconvolution with TV

𝒙 ← prox ⋅ ",9 𝒗 = arg min𝒙
1
2 𝑪𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒗 (

(
𝒙 – update:

=
1
2 𝑪𝒙 − 𝒃 > 𝑪𝒙 − 𝒃 +

𝜌
2 𝑫𝒙 − 𝒗 > 𝑫𝒙 − 𝒗

=
1
2 𝒙>𝑪𝑻𝑪𝒙 − 2𝒙>𝑪𝑻𝒃 + 𝒃𝑻𝒃 +

𝜌
2 𝒙>𝑫𝑻𝑫𝒙 − 2𝒙>𝑫𝑻𝒗 + 𝒗𝑻𝒗

0 = ∇2𝑓 𝒙 = 𝑪𝑻𝑪𝒙 − 𝑪𝑻𝒃 + 𝜌𝑫𝑻𝑫𝒙 − 𝜌𝑫𝑻𝒗

reformulate

find solution by setting gradient to 0

closed-form solution

𝒙 ← 𝑪𝑻𝑪 + 𝜌𝑫𝑻𝑫 !" 𝑪𝑻𝒃 + 𝜌𝑫𝑻𝒗



ADMM for Image Deconvolution with TV

𝒙 ← prox ⋅ ",9 𝒗 = arg min𝒙
1
2 𝑪𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒗 (

(
𝒙 – update:

𝒙 ← 𝑪𝑻𝑪 + 𝜌𝑫𝑻𝑫 !" 𝑪𝑻𝒃 + 𝜌𝑫𝑻𝒗

𝑪𝑻𝒃 + 𝜌𝑫𝑻𝒗 ⇔ ℱ56 ℱ 𝑐 ∗ ⋅ ℱ 𝑏 + 𝜌 ℱ 𝑑0 ∗ ⋅ ℱ 𝑣6 + ℱ 𝑑3
∗ ⋅ ℱ 𝑣2

𝑪𝑻𝑪 + 𝜌𝑫𝑻𝑫 ⇔ ℱ56 ℱ 𝑐 ∗ ⋅ ℱ 𝑐 + 𝜌 ℱ 𝑑0 ∗ ⋅ ℱ 𝑑0 + ℱ 𝑑3
∗ ⋅ ℱ 𝑑3

Exploit duality of algebraic & signal processing interpretation

𝑫𝑻𝒛 = 𝑫𝒙𝑻𝒗𝟏 + 𝑫𝒚𝑻𝒗𝟐 ⇔ ℱ#$ ℱ 𝑑2 ∗⋅ ℱ 𝑣$ + ℱ 𝑑3 ∗⋅ ℱ 𝑣?𝑪𝑻𝑪 ⇔ ℱ#$ ℱ 𝑐 ∗ ⋅ ℱ 𝑐

𝑫𝑻𝑫 ⇔ ℱ#$ ℱ 𝑑2 ∗ ⋅ ℱ 𝑑2 + ℱ 𝑑3
∗ ⋅ ℱ 𝑑3 𝑪𝑻𝒃 ⇔ ℱ#$ ℱ 𝑐 ∗⋅ ℱ 𝑏



• Efficient 𝒙–update operates purely on 2D images with FFTs 
and element-wise multiplications and divisions:

ADMM for Image Deconvolution with TV

𝒙 ← prox ⋅ ",9 𝒗 = arg min𝒙
1
2 𝑪𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒗 (

(
𝒙 – update:

𝒙 ← 𝑪𝑻𝑪 + 𝜌𝑫𝑻𝑫 !" 𝑪𝑻𝒃 + 𝜌𝑫𝑻𝒗

prox ⋅ !,? 𝒛 = ℱ56
ℱ 𝑐 ∗ ⋅ ℱ 𝑏 + 𝜌 ℱ 𝑑0 ∗ ⋅ ℱ 𝑣6 + ℱ 𝑑3

∗ ⋅ ℱ 𝑣2
ℱ 𝑐 ∗ ⋅ ℱ 𝑐 + 𝜌 ℱ 𝑑0 ∗ ⋅ ℱ 𝑑0 + ℱ 𝑑3

∗ ⋅ ℱ 𝑑3

can pre-compute most parts 𝑣6 = 𝒗 1:𝑁 , 𝑣2 = 𝒗(𝑁 + 1: 2𝑁)



ADMM for Image Deconvolution with TV
𝒛 – update:

𝒛 ← prox ⋅ #,9 𝒗 = arg min𝒛 𝜆 𝒛 " +
𝜌
2 𝒗 − 𝒛 (

(

prox ⋅ #,9 𝒗 = 𝒮A 𝒗 = f
𝑣 − 𝜅 𝑣 > 𝜅
0 𝑣 ≤ 𝜅

𝑣 + 𝜅 𝑣 < −𝜅
= 𝑣 − 𝜅 B − −𝑣 − 𝜅 B

This element-wise soft thresholding is the proximal operator for anisotropic TV, 
see course notes on block soft thresholding for isotropic TV.  

• Efficient 𝒛–update uses element-wise soft thresholding 
operator 𝒮A ⋅ :

𝜅 = A𝜆 𝜌

𝒗 = 𝑫𝒙 + 𝒖



ADMM for Image Deconvolution with Denoiser

𝒙 ← prox ⋅ ",9 𝒗 = arg min𝒙
1
2 𝑪𝒙 − 𝒃 (

( +
𝜌
2 𝒙 − 𝒗 (

(
𝒙 – update:

𝒙 ← 𝑪𝑻𝑪 + 𝜌𝑰 !" 𝑪𝑻𝒃 + 𝜌𝒗

prox ⋅ ",9 𝒗 = ℱ!" ℱ 𝑐 ∗ ⋅ ℱ 𝑏 + 𝜌ℱ 𝑣
ℱ 𝑐 ∗ ⋅ ℱ 𝑐 + 𝜌

• Efficient 𝒙–update operates purely on 2D images with FFTs 
and element-wise multiplications and divisions:

𝒗 ∈ ℝ#

no matrix 𝑫!



ADMM for Image Deconvolution with Denoiser
𝒛 – update:

𝒛 ← prox𝒟,9 𝒗 = arg min𝒛 𝜆Ψ 𝒛 +
𝜌
2 𝒗 − 𝒛 (

( 𝒗 = 𝒙 + 𝒖

• Efficient 𝒛–update uses arbitrary denoiser 𝒟 ⋅ , such as 
DnCNN and non-local means, using noise variance   𝜎( =

𝜆
𝜌

prox𝒟,9 𝒙 = 𝒟 𝒙, 𝜎( =
𝜆
𝜌

= arg min𝒛 Ψ 𝒛 +
𝜌
2𝜆 𝒗 − 𝒛 (

(



Image Deconvolution with ADMM
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Image Deconvolution with ADMM
ADMM for deconvolution with TV

ADMM for deconvolution with denoiser



ADMM - Convergence Criterion
• Run or “unroll” ADMM for K iterations 

• Run until change in residual between iterations is < threshold
…



Outlook on Unrolled Optimization

• Interpret as unrolled feedforward network: 

…

𝒃

o𝒙
[Diamond et al. 2017]

• Run or “unroll” ADMM for K iterations 

…



Outlook on Unrolled Optimization
• Run or “unroll” ADMM for K iterations

• Interpret as unrolled feedforward network:

Benefits over unrolled optimization
• Learnable parameters: 𝜆(F), 𝜌(F), denoiser 𝒟(F)

• DenseNet-like skip connections

• Denoiser/regularizer can adapt to matrix 𝑪

• Can train with advanced loss functions (perceptual, 

adversarial, other network, …)

…

𝒃

o𝒙

……

[Diamond et al. 2017]



Overview

• Brief review of deconvolution with inverse/Wiener filtering

• A Bayesian perspective of inverse problems
• Image priors/regularization and total variation

• The Alternating Direction Method of Multipliers (ADMM)
• Image deconvolution with ADMM
• Compressive imaging



Compressive Imaging



Single-pixel Imaging

Duarte et al. 2008



original 10%

5%

2%Duarte et al. 2008

Single-pixel Imaging



……
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Single-pixel Imaging



Under-determined Inverse Problems

• Image formation model: 𝒃 = 𝑨𝒙 + 𝜼, 𝒃 ∈ ℝ/ , 𝒙 ∈ ℝ#,𝑨 ∈ ℝ/×#

𝑀 < 𝑁
• What makes it under-determined (or a 

compressive imaging problem):

• Problem: infinitely many solutions satisfy the observations! 

Same problem as ill-posed problems! à need image priors



Under-determined Inverse Problems

• Image formation model: 𝒃 = 𝑨𝒙 + 𝜼, 𝒃 ∈ ℝ/ , 𝒙 ∈ ℝ#,𝑨 ∈ ℝ/×#

• Standard approach – the least-norm solution: o𝒙EF = 𝑨𝑻 𝑨𝑨𝑻 𝒃

minimize2 𝒙 (

subject to 𝑨𝒙 = 𝒃
• This is the solution of optimization problem

Note: among the infinitely many solutions satisfying the observations, 
the least-norm solution is the one with the smallest L2 norm, thus 

equivalent to ⋅ 2 regularizer



Under-determined Inverse Problems

• Image formation model: 𝒃 = 𝑨𝒙 + 𝜼, 𝒃 ∈ ℝ/ , 𝒙 ∈ ℝ#,𝑨 ∈ ℝ/×#

• Standard approach – the least-norm solution: o𝒙EF = 𝑨𝑻 𝑨𝑨𝑻 𝒃

Compression Factor ⁄> H

2x 8x

PSNR 12.3 PSNR 9.7

4x

PSNR 10.4

• Results (not great):
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Hyperspectral Imaging

Other Inverse Problems in Imaging

• Computational photography
• Light field imaging

• Thermal imaging

• …



Other Inverse Problems in Imaging

• All these inverse problems have important applications and 

are very different

minimize𝒙
1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝒙

• Yet, they all boil down to the same inverse problem, each with 

a different matrix 𝑨: 

• The methods derived here also apply to all those problems 

and applications; single-pixel imaging is a great example 
problem à “if you can solve this, you can solve anything” 



Review of ADMM for General Inverse Problems

minimize𝒙
1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝒙

weight of regularizer

• Objective or “loss” function 

of general inverse problem:

minimize 2,=
1
2 𝒃 − 𝑨𝒙 (

( + 𝜆Ψ 𝒛

subject to 𝑫𝒙 − 𝒛 = 0

𝐿9 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 +
9
(
𝑫𝒙 − 𝒛 + 𝒖 (

( + 𝒖 (
(

• Reformulate as:

• Remove constraints using 

augmented Lagrangian

𝑓 𝒙 𝑔 𝒛



𝒙 ← proxG,9 𝒗 = arg min𝒙 𝐿9 𝒙, 𝒛, 𝒖 = arg min𝒙 𝑓 𝒙 +
𝜌
2 𝑫𝒙 − 𝒗 (

(

𝒛 ← proxH,9 𝒗 = arg min𝒛 𝐿9 𝒙, 𝒛, 𝒖 = arg min𝒛 𝑔 𝒛 +
𝜌
2 𝒗 − 𝒛 (

(

while not converged:

• Alternating gradient descent approach to solving penalty 

formulation leads to following iterative algorithm: 

Review of ADMM for General Inverse Problems
𝐿9 𝒙, 𝒛, 𝒖 = 𝑓 𝒙 + 𝑔 𝒛 + 9

(
𝑫𝒙 − 𝒛 + 𝒖 (

( + 𝒖 (
(



𝒙 ← prox ⋅ ",9 𝒗 = arg min𝒙
1
2 𝑨𝒙 − 𝒃 (

( +
𝜌
2 𝑫𝒙 − 𝒗 (

(
𝒙 – update:

Review of ADMM for General Inverse Problems

𝒙 ← 𝑨𝑻𝑨 + 𝜌𝑫𝑻𝑫 !" 𝑨𝑻𝒃 + 𝜌𝑫𝑻𝒗

K𝑨 K𝒃

• For general inverse problems, we don’t necessarily have an 
efficient closed-form solution for this problem, like we did for the 
deconvolution problem

• Use matrix-free iterative solver, such as the conjugate gradient 
method, to solve w𝑨𝒙 = w𝒃 (e.g., scipy.sparse.linalg.cg)



Review of ADMM for General Inverse Problems
𝒛 – update for TV regularizer in closed form:

𝒛 ← prox ⋅ #,9 𝒗 = arg min𝒛 𝜆 𝒛 " +
9
(
𝒗 − 𝒛 (

(= 𝒮A 𝒗

𝒛 – update for denoising-based regularizer in closed form:

𝒛 ← prox𝒟,9 𝒗 = arg min𝒛 𝜆Ψ 𝒛 + 9
(
𝒗 − 𝒛 (

( = 𝒟 𝒗, 𝜎( = I
9



ADMM – Results
Least Norm HQS+TV HQS+DnCNN ADMM+DnCNNADMM+TV

C
om

pr
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on

 F
ac

to
r 
⁄>
H

2x
8x

PSNR 12.3

PSNR 9.7

PSNR 33.7

PSNR 15.4

PSNR 32.0

PSNR 16.3

PSNR 44.0

PSNR 15.2

PSNR 42.2

4x

PSNR 10.4 PSNR 18.6 PSNR 26.0 PSNR 19.6 PSNR 34.7

PSNR 30.5



Short tangent on Half Quadratic Splitting (HQS)
(Another solver for constrained optimization problems)



The Half-quadratic Splitting (HQS) Method

minimize2
1
2 𝒃 − 𝑨𝒙 (

( + λΨ 𝒙

weight of regularizer

• Objective or “loss” function 

of general inverse problem:

minimize 2,=
1
2 𝒃 − 𝑨𝒙 (

( + 𝜆Ψ 𝒛

subject to 𝑫𝒙 − 𝒛 = 0

𝐿9 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

• Reformulate as:

• Remove constraints using 

penalty term (equivalent for large 𝜌):

𝑓 𝒙 𝑔 𝒛

penalty term



The Half-quadratic Splitting (HQS) Method
𝐿9 𝒙, 𝒛 = 𝑓 𝒙 + 𝑔 𝒛 +

𝜌
2 𝑫𝒙 − 𝒛 (

(

𝒙 ← proxG,9 𝒛 = arg min2 𝐿9 𝒙, 𝒛 = arg min2 𝑓 𝒙 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

𝒛 ← proxH,9 𝑫𝒙 = arg min= 𝐿9 𝒙, 𝒛 = arg min= 𝑔 𝒛 +
𝜌
2 𝑫𝒙 − 𝒛 (

(

while not converged:

• Alternating gradient descent approach to solving penalty 

formulation leads to following iterative algorithm: 



• Steps not tied together with dual variable

• Can be very sensitive to the penalty parameter,
requiring more tuning than ADMM (technically, 
penalty needs to go to infinity)



Applications of Compressive Imaging



• reduce acquisition time, radiation exposure, or allow for more 
patients in same time, …

• examples: x-ray computed tomography and MRI

Compressive Medical Imaging



This slide has a 16:9 media window
Computed Tomography (CT)
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This slide has a 16:9 media window
Computed Tomography – Fourier Slice Theorem

primal domainfrequency domain

• measurements = Fourier slices
• compressive CT: e.g. fewer slices



Magnetic Resonance Imaging

frequency domain

• measurements = (random) Fourier coefficients 
• compressive MRI: fewer Fourier coefficients
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• people in bio-medical imaging often hesitant about priors:
• few guarantees for success

• if reconstruction breaks, not clear how exactly

• is that feature a reconstruction artifact or the thing I’m looking 

for?

Compressive Imaging: CT & MRI



Compressive Hyperspectral Imaging
• motivation:

• conventional: either scan over xy or over lambda!

• idea: capture hyperspectral datacube with a single, coded image 
– use compressive sensing to reconstruct

• first approach: CASSI (coded aperture snapshot spectral imager), 

Wagadarikar 2008

x

y λ



Compressive Hyperspectral Imaging

Arce et al. 2014



Compressive Hyperspectral Imaging

Arce et al. 2014



Compressive Hyperspectral Imaging

Arce et al. 2014

• moderate quality for snapshot, but good quality for coded multi-shot
• applications: remote sensing, cultural heritage, …



• metamaterials
• THz imaging

• x-ray imaging

• thermal IR

• ultra-fast imaging

• not as much on compressive coherent imaging (could be interesting 
for course projects: OCT, holography, …)

• …

Compressive Imaging Everywhere



Notes
• compressive imaging is an exploding area: check COSI, ICCP, 

CVPR, ICCV conferences, other optics journals and conferences

• most variants of compressive imaging problems can be 

implemented with ADMM

• check lecture notes online to help with homework

• Increasingly we want to learn the sensing matrices, reconstruction 

using neural networks and datasets…
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