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Announcements

« HW 2 due Wednesday 5/10
* HW3 is out

» See website for all office hours/problem session dates



Fourier Transform

« What is this?
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Fourier Transform

any continuous, integrable function can be represented as an infinite

sum of sines and cosines:

=] f©e™ds «—> FE=] fx)e™ dx



Fourier Transform

f(z,y) = / F(kg, ky)e2m ke TRuv) qk dk,
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Fourier Transform

f(z,y) = / F(kg, ky)e2m ke TRuv) qk dk,
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I
cos(2m|kyx + kyyl) + jsin(27[kzz + kyy))




Fourier Transform
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Fourier Transform

f(z,y) = / F(kg, ky)e2m ke TRuv) qk dk,
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Fourier Transform

f(z,y) = / F(kg, ky)e2m ke TRuv) qk dk,
— ]

I
Acos(27kyx + kyy| + ¢) + jJAsin(2m |k x + kyy| + @)

Fourier coefficients of real signals are
conjugate symmetric




Fourier Transform

f(z,y) = / F(kg, ky)e2m ke TRuv) qk dk,

o J

|
Acos(2m[kzx + kyy| + @) + jAsin(2n[kzz + kyy] + @)

Images are sums of
cosines at different
amplitudes, phases,
spatial frequencies




Magnitude vs Phase




Fourier Transform

« any continuous, integrable, periodic function can be represented as an

infinite sum of sines and cosines:

o= F&E™dE «—> fE)=] fx)e>™ dx

. convolution theorem (critical): | x*g=F"' {F{x}F{g}}




Discrete vs Continuous Fourier Transform

Primal Domain Fourier Domain
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Sampling

Primal Domain Fourier Domain
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discrete sampled signal



Sampling

Primal Domain Fourier Domain
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Sampling

Primal Domain

: .A\‘H “‘hh : %

Fourier Domain

Highest frequency

Sample rate should
be twice the highest
frequency to avoid
aliasing!



Primal Domain

periodic signal

Periodicity

)

Fourier Domain
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Primal Domain

Sample rate of f;

Periodicity

Fourier

Domain
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Primal Domain

Periodicity

f

)

Fourier

: .,IIIW‘H

Domain

H“hh,,

A periodic signal can be represented by a discrete set of

Fourier coefficients

« These are called the “Fourier series coefficients”



Discrete Fourier Transform

Primal Domain Fourier Domain
t
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In practice, we wish to take the Fourier
transform of discrete signals.

But we need to represent the Fourier domain
with discrete values, too!



Discrete Fourier Transform

Primal Domain Fourier Domain

..... W AL
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Assume the primal domain signal is periodic



.......

Discrete Fourier Transform

.. ,M|| L Al 2l B J

Input to DFT Output of DFT

Assume the primal domain signal is periodic

|



Discrete Fourier Transform

most important for us: discrete Fourier transform

1 vt | ) _ |
x[n] — ﬁz;v:ol x[k] ekan/N x[k] — ZnNZOI x[n] e—27l'lkn/N



Discrete Fourier Transform

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2™ factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the calculation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in-a procedure
requiring & number of operations proportional to N log N rather than N°. These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of N. It is also shown how special
advantage can be obtained in the use of a binary computer with N = 2™ and how
the entire calculation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

Fast Fourier Transform: Cooley & Tukey 1965
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Imaging



Lens imperfections
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* ldeal lens: A point maps to a point at a certain plane.
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Lens imperfections

* ldeal lens: A point maps to a point at a certain plane.
* Real lens: A point maps to a circle that has non-zero minimum radius among all

planes.
R

1 1 1

S S f

. I

object distance S sensor distance S’

A"R" -
Vo N

What is the effect of this on the images we capture?



Lens imperfections

* ldeal lens: A point maps to a point at a certain plane.
* Real lens: A point maps to a circle that has non-zero minimum radius among all

planes.
1 1 1 A /I
s''Sf
f I blur

. I

object distance S> <sensor distance S’

A"R" -7

Shift-invariant blur.



Lens imperfections

What causes lens imperfections?



Lens imperfections

What causes lens imperfections?
* Aberrations.

(Important note: Oblique
aberrations like coma and

distortion are not shift-
invariant blur and we do
not consider them here!)

] Chromatic aberration Spherical aberration

» Diffraction.

small
aperture

large
aperture




Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
« “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture

shape.
1,11 1 '
s S f /I blur

I ¢ kernel

| diffraction-limited
X —I « PSF of a circular

object distance S> <sensor distance S’ aperture
(Airy pattern)

A"R" -7



Some basics of diffraction theory

We will assume that we can use:

» Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to
wavelength).

* incoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn
to scale.



Some basics of diffraction theory
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Some basics of diffraction theory

v/\\/ /\v/>
coherent point spread
function: sinc(x)

v

aperture:
rect(x)

The 1D case




Some basics of diffraction theory

coherent pom\{spread
> function: sinc(x)

aperture:
rect(x)

optical transfer -

The 1D case function: tent(x)




Some basics of diffraction theory

,
«©
0 S
é/af@
coherent pom\{spread
> function: sinc(x) A JaN >
aperture: incoherent point spread
rect(x) function: sinc?(x)
o

why do we get the

> same result?
optical transfer

function: tent(x)

The 1D case




Some basics of diffraction theory

N

aperture:

rect(x)

The 1D case

coherent pom\{spread
function: sinc(x)

optical transfer
function: tent(x)

S,
%ef@

N\ VAN

incoherent point spreéd

function: sinc?(x)

what happens if we
increase the aperture

size?



N

aperture:
rect(x/2)

The 1D case

/\/\/\ /\/\/\

coherent point spread

function: sinc(2x)

optical transfer -

function: tent(x/2)

Some basics of diffraction theory

S,
%ef@

JAY

VAN

incoherent point spreéd

function:

sinc?(2x)
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Some basics of diffraction theory

«©
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coherent point spread
function: sinc(10x)

aperture:
rect(x/10)

As the aperture size
increases...

The 1D case

function: tent(x

\

S,
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1 ,

incoherent point spreéd
function: sinc?(10x)

... point spread function
becomes smaller



Some basics of diffraction theory

aperture incoherent point spread
function
S «©

As the aperture size
increases...

The 2D case

... point spread function
becomes smaller

optical transfer
function




Some basics of diffraction theory

aperture incoherent point spread
function
S «©

As the aperture size
increases...

The 2D case

... point spread function
becomes smaller

optical transfer
function




Some basics of diffraction theory

Why do we prefer circular
apertures?

aperture incoherent point spread
function
S «©

As the aperture size
increases...

The 2D case

... point spread function
becomes smaller

optical transfer
function




Some basics of diffraction theory

Other shapes produce very
anisotropic blur.

aperture incoherent point spread
function
S «©

As the aperture size
increases...

The 2D case

... point spread function
becomes smaller

optical transfer
function




Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
« “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture

shape.
I ]
/! blur

I ¢ kernel
|

| diffraction-limited
X —I « PSF of a circular

optical transfer object distance S> <sensor distance S’ aperture
function (OTF) (Airy pattern)

aperture

A"&" -7



Lens as Optical Low-pass Filter

away from focal plane: out of focus blur

blurred point

’

focal plane




Lens as Optical Low-pass Filter

shift-invariant convolution
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Lens as Optical Low-pass Filter

diffraction-limited PSF of circular

aperture (aka “Airy” pattern):

b=c*x [

O

®
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l 2
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X b
sharp image measured, blurred imag

point spread function (PSF): ¢

e

: -/



What's a Discrete Image”

continuous 2D visual signal on sensor: i(x,y)

integration over pixels: f(x,y) = i(x,y)*(,ﬁect[ﬁ]rec{%n
w

sensor pixel: ih




What's a Discrete Image”

continuous 2D visual signal on sensor:  i(x,y)

. . : v . X Yy
integration over pixels: l (x,y) = z(x,y)*(rect[—]rect[zn
w

discrete sampling:

Eli,j]|= Sample(f(x,y)) = f(x,y)-zmzn5(i,j)

(in irradiance %)



What's a Discrete Image”

MTF

. __ footprint
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(detector footprint modulation transfer function, Boreman 2001)




What's a Discrete Image”

AVERAGE TRRADIANCE LEVEL

IRRAD IANCE

low spatial
frequency
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Filtering — Low-pass Filter

+ low-pass filter: convolution in primal domain b=x*c

» convolution kernel cis also known as point spread function (PSF)

small




Filtering — Low-pass Filter

* low-pass filter: multiplication in frequency domain F{b} = F{x} : F{c}




Filtering — Low-pass Filter

low-pass filter: hard cutoff F{b}=F{x} F{c}




Filtering — Low-pass Filter

« Bessel function of the first kind or “jinc”

imagemagick.org

: __Jl(szt'p)

254i P

2.“2

optique-ingenieur.org



Filtering — Low-pass Filter

« hard frequency filters often introduce ringing




Filtering — High-pass Filter

sharpening (possibly with ringing, but don’t see any here)




Filtering — Unsharp Masking

« sharpening (without ringing): unsharp masking, e.g. in Photoshop

— vk _ — v vk
b =X (5 clowpass_ gauss) =X=X Clowpass_ gauss

or

— vk — %k
b=x (5 + Chighpass) =X+Xx Chighpass




Filtering — Unsharp Masking

« sharpening (without ringing): unsharp masking, e.g. in Photoshop

unsharp original




Filtering — Band-pass Filter




Filtering — Oriented Band-pass Filter

« edges with specific orientation (e.g., hat) are gone!




Image Downsampling (& Upsampling)

* best demonstrated with “high-frequency” image

 that’s just resampling, right?



pocketfullofliberty.com/high-frequency-trading
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pocketfullofliberty.com/high-frequency-trading

re-sample image: 1(1:4:end, 1:4:end) in Matlab
something is wrong - aliasing!




pocketfullofliberty.com/high-frequency-trading

need to low-pass filter image first!
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pocketfullofliberty.com/high-frequency-trading

need to low-pass filter image first!




pocketfullofliberty.com/high-frequency-trading

first: filter out high frequencies (“anti-aliasing”)
then: then re-sample image: 1(1:4:end,1:4:end)




Image Downsampling (& Upsampling)

“anti-aliasing” = before re-sampling, apply appropriate filter!

how much filtering? Shannon-Nyquist sampling theorem:

S 22 nas




pocketfullofliberty.com/high-frequency-trading

no anti-aliasing with anti-aliasing

ML
HUul
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Examples of Aliasing: Temporal Aliasing

« wagon wheel effect (temporal aliasing)

sampling frequency was lower than 2f

WA

wikipedia




Examples of Aliasing: Temporal Aliasing

wagon wheel effect
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youtube.com/watch?



Examples of Aliasing: Sampling on Sensor

O

point source on focal plane maps to PSF

®

focal plane

g



Examples of Aliasing: Sampling on Sensor

O

PSF must be larger than 2*pixel size!

®

3

focal plane

Optical Anti-Aliasing (AA) filter



Other Forms of Aliasing

« photography — optical AA filter removed (“hot rodding” camera)

John Shafer mosaicengineering.com



Deconvolution



Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

kK =

image from imperfect lens

b

84




85

Lens as an optical low-pass filter

If we know b and k, can we recover i?

image from a perfect lens imperfect lens PSF image from imperfect lens

* k — b



Deconvolution
I~ kK =D

If we know k and b, can we recover i?



Deconvolution
I+ k =D
Reminder: convolution is multiplication in Fourier domain:

(i) - F(k) = F(b)

If we know k and b, can we recover i?



Deconvolution
I+ k =D
Reminder: convolution is multiplication in Fourier domain:

(i) - F(k) = F(b)

Deconvolution is division in Fourier domain:

F(lest)=F(b) \ F(k)

After division, just do inverse Fourier transform:

est = F1(F(b)\F(k))



Deconvolution

Any problems with this approach?



Deconvolution

* The OTF (Fourier of PSF) is a low-pass filter
zeros at high
frequencies

* The measured signal includes noise

b — k * | + N noise term



Deconvolution

* The OTF (Fourier of PSF) is a low-pass filter
zeros at high
frequencies

* The measured signal includes noise

b — k * | 4+ N noise term

* When we divide by zero, we amplify the high frequency noise



Naive deconvolution

Even tiny noise can make the results awful.
« Example for Gaussian of o = 0.05

o

.

.
Rl

— est




Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

FKI° F(b)

A

T i
lost = F

(\F(k)\2+ [SNR(w) | F(k)

noise-dependent damping factor 7
» Derived as solution to maximum-likelihood problem under Gaussian noise

assumption
» Requires noise of signal-to-noise ratio at each frequency

signal variance at w

SNR(w) = — .
Nnoise variance at w



Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

|F(

O

T i
lost = F

A

(e
[F(k)IZ +
noise-dependent damping factor 7

Intuitively:
* When SNR is high (low or no noise), just
 When SNR is low (high noise), just set to

/SNR(w)

divide by kernel.
zero.



Deconvolution comparisons

naive deconvolution Wiener deconvolution

95



Deconvolution comparisons

o =0.01

96




Derivation

Sensing model:
Noise n is assumed to be zero-

b=kxi+n mean and independent of
signal i.



Derivation

Sensing model:
Noise n is assumed to be zero-

b=kxi+n mean and independent of
signal i.
Fourier transform:

B=K-I+N

\ Why multiplication”?



Derivation

Sensing model:
Noise n is assumed to be zero-

b=kxi+n mean and independent of
signal i.
Fourier transform:

Convolution becomes
B=K-I+N multiplication.

Problem statement: Find function H(w) that minimizes expected error in Fourier
domain.

min E{||1 — HB||?]



Derivation

Replace B and re-arrange loss:

mI}n E[l|(1 — HK)I — HN||?]
Expand the squares:

min||1 — HK|[*E[|I[I|*] = 2H(1 = HK)E[IN] + ||H[I*E[|IN|*]



Derivation

When handling the cross terms:
« Can | write the following?

E[IN] = E[I|E[N]



Derivation

When handling the cross terms:
« Can | write the following?

E[IN] = E[I|E[N]

Yes, because | and N are assumed independent.

* What is this expectation product equal to?



Derivation

When handling the cross terms:
« Can | write the following?

E[IN] = E[I|E[N]

Yes, because | and N are assumed independent.
* What is this expectation product equal to?

Zero, because N has zero mean.



Derivation

Replace B and re-arrange loss:

mI}n E[l|(1 + HK)I — HN||?]
Expand the squares:

min||1 — HKI||*E[||[||*] — 2H(1 — HK)E[IN] + |[H|[?E[|IN1*]
H W cross-termis

Simplify: Z€ro

min||1 — HKIE[I7II*] + IHI“ETIINII“]

How do we solve this optimization problem?



Derivation

Differentiate loss with respect to H, set to zero, and solve for H:

dloss B

0H

= —2K(1 — HK)E[||I||*] + 2HE[||N||*] = 0

_ KE[“]
K2E[|I11I*] + ETINII?]

= H

Divide both numerator and denominator with E[||I]|?], extract factor 1/K, and done!



Deconvolution with Wiener Filtering

 results: not too bad, but noisy

* need more advance image priors to solve this ill-

posed inverse problem robustly = more in week 7&8



Sampling & Deconvolution — Summary

Shannon-Nyquist theorem: always sample signal at
a sampling rate >= 2*highest frequency of signal

If Shannon-Nyquist is violated, aliasing occurs

aliasing cannot be corrected digitally in post-
processing (see optical anti-aliasing filter)

PSF is usually a low-pass filter, so deconvolution is
an ill-posed inverse problem ®



Matrices and Linear Systems — Review

« basic linear algebra, review it necessary!

» see references for online resources

e Dbrief review now



Matrices and Linear Systems — Review

most computational imaging problems are linear

geometric optics approximation of light is linear in

Intensity

not necessarily true for wave-based models (e.qg.

interference, phase retrieval, ...)



Matrices and Linear Systems — Review

« most computational imaging problems are linear

b= Ax
/7 N

blurry, noisy, or otherwise unknown image
corrupted measurements

matrix modeling image formation, usually known



Matrices and Linear Systems — Review

e« common problem: given b, what can | hope to
recover?

e answer: analyze matrix via condition number, rank,
SVD - please review these concepts

b= Ax
/7 N

blurry, noisy, or otherwise unknown image
corrupted measurements

matrix modeling image formation, usually known



Matrices and Linear Systems — Review

« other common problem: given b, what is x?

e answer: invert matrix?
b= Ax
? —1
x,, =ADb



Matrices and Linear Systems — Review

« other common problem: given b, what is x?

* answer: invert matrix — generally not!

b= Ax




Linear Systems

« problem 1: matrix inverse only defined for square,
full-rank matrices — most imaging problems are
NOT!

e problem 2: most imaging problems deal with really
big matrices — couldn’t compute inverse, even if

there was one!

* solution: iterative (convex) optimization



Linear Systems

case 1. over-determined system = more
measurements than unknowns
A€ER™"" m>n

case 2: under-determined system = fewer
measurements than unknowns
AER™ " m<n



Linear Systems

« case 1: over-determined system = more
measurements than unknowns
A€ER™"" m>n

« formulate least-squared error objective function:

minimize %Hb—Atz ||r||z=2ii’i2, r=b—Ax
/1

1

62 norm residual



Linear Systems

 |east squares solution: gradient of objective = 0

e gradient:
1

vV, %Hb ~A[ =V, E(bTb —2b" Ax+x" A" Ax)= A" Ax— A"b

* equate to zero — normal equations:

ATAx=A"b



Linear Systems

 |east squares solution: gradient of objective = 0

e gradient:
1

vV, %Hb ~A[ =V, E(bTb —2b" Ax+x" A" Ax)= A" Ax— A"b

* equate to zero — normal equations:

ATAx= A" Al (Ax —b) =0

The residual is “normal”’ to the columns of A




Linear Systems

closed-form solution to normal equations:
-1
ATAx=A"p — x,,=(ATA) ATb

rarely applicable, because again A is big and
usually not full rank

regularized solution (ATA + /II) A'b

(always full rank, but still too big to directly invert)



Linear Systems — Gradient Descent

« solve with iterative method, easiest one: gradient
descent (

A b

ATA+7LI)x:ATb
— ——

« use the negative gradient of objective as descent
direction at iteration A, with step length o

K =0 gV = x® — AT (Ax® - )



Linear Systems — Gradient Descent

* use the negative gradient of objective as descent
direction at iteration &, with step length o

x e+ = x (0 —y = x(O — g AT (AxF) — p)

 for large-scale problems, implement as function
handles!
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* back to convolution example:

x e+ = x (0 —y = x(O — g AT (AxF) — p)
=x®) — ¢ (c* x (cx xO) — b))

« efficient implementation using convolution theorem:

x+D = x (O — o F7HF{c}* - (F{c} - F{x"} — F{p})}
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b= Ax

« What if our measurements are too large to store in
memory?

« Can happen for linear models—very common for
nonlinear models (neural networks)!

« Will see more on this later...
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b= Ax

e Solution?
« Stochastic optimization by sampling entries/rows
from b and A at each iteration

b= Ax
2D = (0 _ o AT (k) (k) _ (k)
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Tradeoffs

GD is expensive
* but better convergence

SGD is more efficient
 works well far from minima
* but struggles close to minima

* can be good for non-convex
problems!




Next: Computational Photography

HDR Imaging & Coded Apertures
Tone Mapping
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