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Announcements

• HW 2 is out (due next Wednesday 5/10)

• Instructor office hours today 1:30-2:30pm BA 7228
• TA office hours Tues/Fri 12:00-1:30pm BA 3201
• Problem session Wed 11:00am-12:00pm SS1071



Review – “Sensors are Buckets”
collect photons 

like a bucket
integrate spectrum integrate incident 

directions



focal plane

Each pixel sees a point 
on the focal plane from 
different perspectives!



Bayer pattern

wikipedia

Review – Color Filter Arrays



Image Formation

i x( ) ≈ l x,θ ,λ,t( )
Ωθ ,λ ,t

∫∫∫ dθdλdt

= l x,θ ,λ,t( )
Ωθ ,λ ,t

∫∫∫ c λ( )ϕ θ( )dθdλdt

plenoptic function

spectral sensitivity 
of sensor

angle-dependent factor

• high-dimensional integration over angle, wavelength, time

plenoptic function:
[Adelson 1991]



More Ways to Capture Color

field sequential

wikipedia

multiple sensors vertically stacked

red sensor
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More Ways to Capture Color

• Russian chemist and photographer
• used Maxwell’s color photography technique 

(1855)

• commissioned by Tsar Nicholas II, photo-

documented diversity of Russian empire from 

1909-1915
• ~3500 negatives
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More Ways to Capture Color

• notable French inventor
• Nobel price for color photography in 

1908 = volume emulsion capturing 

interference

• today, this process is most similar to 

volume holography!
• also invented integral imaging (will hear 

more…)

Gabriel Lippmann Lippmann’s
stuffed parrot



Three-CCD Camera

Philips / wikipedia

beam splitter prism



Stacked Sensor

Foveon X3

Sigma SD9



Other Wavelengths

• OmniVision:
RGB + near IR!



Other Wavelengths

nostril

pit organ for IR

• thermal IR
• often use Germanium 

optics (transparent IR)

• sensors don’t use 
silicon: indium, 
mercury, lead, etc.

FLIR Systems 



Color is an artifact of human perception
• “Color” is not an objective physical property of light (electromagnetic 

radiation).
• Instead, light is characterized by its wavelength.

What we call “color” is how we 
subjectively perceive a very 

small range of these 
wavelengths.

electromagnetic 
spectrum

15



Spectral Sensitivity Function (SSF)
• Any light sensor (digital or not) has different sensitivity to different 

wavelengths.

• This is described by the sensor’s spectral sensitivity function

• When measuring light of some SPD           , the sensor produces a scalar 
response:

sensor 
response

light SPD sensor SSF

Weighted combination of light’s SPD: light contributes more at 
wavelengths where the sensor has higher sensitivity.

16



Spectral Sensitivity Function of Human Eye
• The human eye is a collection of light sensors called cone cells.

• There are three types of cells with different spectral sensitivity functions.

• Human color perception is three-dimensional (tristimulus color).

“short”

“medium”

“long”

17



The retinal color space

“pure beam” (laser)

18



The retinal color space

• “lasso curve”
• contained in positive octant
• parameterized by wavelength
• starts and ends at origin
• never comes close to M axis“pure beam” (laser)

why?
why?

19



The retinal color space

“pure beam” (laser)

if we also consider variations in the 
strength of the laser this “lasso” turns into 
(convex!) radial cone with a “horse-shoe 
shaped” radial cross-section
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The retinal color space

“mixed beam”
= convex combination of pure colors

colors of mixed beams are at the 
interior of the convex cone with 
boundary the surface produced by 
monochromatic lights
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The retinal color space

“mixed beam”
= convex combination of pure colors

• distinct mixed beams can 
produce the same retinal color

• these beams are called 
metamers
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There is an infinity of metamers
23



Color matching

24



“primaries”

“test light”

Adjust the strengths of the primaries until they re-produce the test color. 
Then:

equality symbol means “has the same 
retinal color as” or “is metameric to”

CIE color matching
25



“primaries”
“test light”

CIE color matching

To match some test colors, you need to 
add some primary beam on the left (same 
as “subtracting light” from the right)
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“primaries”

CIE color matching

Repeat this matching experiments for pure test beams at wavelengths λi and keep 
track of the coefficients (negative or positive) required to reproduce each pure 
test beam. 
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“primaries”

CIE color matching

Repeat this matching experiments for pure test beams at wavelengths λi and keep 
track of the coefficients (negative or positive) required to reproduce each pure 
test beam. 

note the 
negative values
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“primaries”

CIE color matching

What about “mixed beams”?
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Two views of retinal color

Analytic: Retinal color is produced by 
analyzing spectral power distributions 
using the color sensitivity functions.

Synthetic: Retinal color is produced 
by synthesizing color primaries 
using the color matching functions.

30



Two views of retinal color

Analytic: Retinal color is produced by 
analyzing spectral power distributions 
using the color sensitivity functions.

Synthetic: Retinal color is produced 
by synthesizing color primaries 
using the color matching functions.

The two views are equivalent: Color matching functions are also color sensitivity 
functions. For each set of color sensitivity functions, there are corresponding 
color primaries.
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32

CIE RGB colorspace

Created by the International Commission on 
Illumination in 1931 based on color matching 
experiments from 12 people!
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CIE RGB colorspace

Created by the International Commission on 
Illumination in 1931 based on color matching 
experiments from 12 people!

Negative values are not physical
since we cannot subtract light
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CIE RGB colorspace

Created by the International Commission on 
Illumination in 1931 based on color matching 
experiments from 12 people!

CIE XYZ colorspace
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CIE XYZ colorspace



chromaticity

luminance/brightness

CIE xy (chromaticity)

Perspective projection of 3D retinal 
color space to two dimensions.
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CIE xy (chromaticity)

Note: These colors can be 
extremely misleading depending 
on the file origin and the display 
you are using
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CIE xy (chromaticity)

What does the boundary of the 
chromaticity diagram correspond 
to?
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Color gamuts

We can compare color spaces by looking 
at what parts of the chromaticity space 
they can reproduce with their primaries.
But why would a color space not be able 
to reproduce all of the chromaticity 
space? 

39



Color gamuts

We can compare color spaces by looking 
at what parts of the chromaticity space 
they can reproduce with their primaries.
But why would a color space not be able 
to reproduce all of the chromaticity 
space? 

• Many colors require negative weights 
to be reproduced, which are not 
realizable.
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Color gamuts

sRGB color gamut:
• What are the three triangle corners?
• What is the interior of the triangle?
• What is the exterior of the triangle?
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Color gamuts

sRGB color gamut

sRGB color primaries

sRGB
realizable 

colors

sRGB
impossible 

colors
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Color gamuts

Gamuts of various common 
industrial RGB spaces

What is 
this?
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The problem with RGBs visualized in chromaticity 
space

RGB values have no meaning if the 
primaries between devices are not the 
same!
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Review: Photons to RAW Image

sensor ADC
(quantization)

amplifier 
(gain,ISO)

photon
noise

additive noise
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Image Processing Pipeline

demosaicking gamut 
mappingdenoising
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W
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e

JP
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 im
ag

e

compression

… … …

• dead pixel removal
• dark frame subtraction (fixed pattern / thermal noise 

removal)
• lens blur / vignetting / distortion correction
• sharpening / edge enhancement 

also:



Image Processing Pipeline

RAW image
(dcraw –D)

JPEG image



Image Processing Pipeline
• demosaicking
• denoising

• digital autoexposure

• white balancing
• linear 10/12 bit to 8 bit gamma

• compression



Image Processing Pipeline
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Image Processing Pipeline
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Exif Meta Data
exchangeable image file format



Demosaicking (CFA Interpolation)
RAW
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Demosaicking (CFA Interpolation)
RAW linear interpolation green channel
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ĝlin (x, y) =
1
4

g(x +m, y + n)
(m,n)∑

(m,n) = {(0,−1),(0,1),(−1,0),(1,0)}

Bayer CFA



Demosaicking (CFA Interpolation)
RAW linear interpolation
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Demosaicking (CFA Interpolation)
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Quick aside: optical low-pass filter
• Sensors often have a separate glass sheet in front of them acting as an optical low-

pass filter (OLPF, also known as optical anti-aliasing filter).
• The OLPF is typically implemented as two birefringent layers, combined with the 

infrared filter.
• The two layers split 1 ray into 4 rays, implementing a 4-tap discrete convolution filter 

kernel.

58

birefringence in a calcite crystal birefringence ray diagram



Quick aside: optical low-pass filter

• However, the OLPF means you also lose 
resolution.

• Photographers often hack their cameras to 
remove the OLPF, to avoid the loss of resolution 
(“hot rodding”).

• Camera manufacturers offer camera versions 
with and without an OLPF.

59

• Sensors often have a separate glass sheet in front of them acting as an optical low-
pass filter (OLPF, also known as optical anti-aliasing filter).

• The OLPF is typically implemented as two birefringent layers, combined with the 
infrared filter.

• The two layers split 1 ray into 4 rays, implementing a 4-tap discrete convolution filter 
kernel.



Quick aside: optical low-pass filter

without OLPF with OLPF

Example where OLPF is needed
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Quick aside: optical low-pass filter

without OLPF with OLPF

Example where OLPF is unnecessary
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Quick aside: optical low-pass filter
62

Nikon D800 Nikon D800E

Identical camera model with and without an OLPF (no need for 
customization).



Demosaicing – Low-pass Chroma
• sampling problem (despite optical AA filter): (too) high-

frequency red/blue information

• simple solution: low-pass filter chrominance – humans 

are most sensitive to “sharpness” in luminance:

1. apply naïve interpolation
2. convert to Y’CbCr (related to YUV)

3. median filter chroma channels: Cb & Cr

4. convert back to RGB

Y’

Cb

Cr



Demosaicing – Low-pass Chroma
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Demosaicing – Low-pass Chroma

1.

2. blur

3. Y’CrCb to RGB
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Demosaicing – Low-pass Chroma

Y’CrCb to RGB:

RGB to Y’CrCb:
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Matlab functions: rgb2ycbcr() and ycbcr2rgb()
Pixel values for above equations between 0 and 255!



Demosaicing – Low-pass Chroma
linear interpolation chrominance filtered



Demosaicing – Edge-Directed Interpolation
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• intuitive approach: consider 3x3 neighborhood
• example: recover missing green pixel



Demosaicing – Edge-Directed Interpolation
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• better: consider 5x5 neighborhood
• example: recover missing green pixel on red pixel



Demosaicing – Edge-Directed Interpolation
• insights so far:

• larger pixel neighborhood may be better, but also more costly

• using gradient information (edges) may be advantageous, even if 

that info comes from other color channels!

• nonlinear method is okay, but not great – linear would be best!

• Malvar et al. 2004 – what’s the best linear filter for 5x5 neighborhood?

• this is implemented in Matlab function demosaic() and part of HW2



Demosaicing- Malvar et al. 2004

ĝ(x, y) = ĝlin (x, y)+αΔR(x, y)

r̂(x, y) = r̂lin (x, y)+ βΔG (x, y)
r̂(x, y) = r̂lin (x, y)+ γΔB(x, y)

• interpolate R at G pixels:
• interpolate R at B pixels:

• interpolate G at R pixels:

ΔR(x, y) = r(x, y)−
1
4

r(x +m, y + n)
(m,n)∑

(m,n) = {(0,−2),(0,2),(−2,0),(2,0)}

red gradient:

• gain parameters optimized from Kodak dataset: α = 1/ 2, β = 5 / 8, γ = 3 / 4



Demosaicing - Malvar et al. 2004
• write out math to get linear filters:

• use normalized filters in practice, 

i.e. scale numbers by sum of filter



Demosaicing - Malvar et al. 2004
linear interpolation Malvar et al.



common sources:
out-of-focus blur

geometric distortion
spherical aberration

chromatic aberration
comaInput

Deblurring / Deconvolution
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Blurred input image Deblurred / deconvolved image



Denoising

noisy image
(Gaussian iid noise, σ=0.2) 

• problem: have noisy image, want 
to remove noise but retain high-

frequency detail



Denoising – Most General Approach

idenoised (x) = 1
w(x, ′x )

all pixels ′x∑ inoisy( ′x )
all pixels ′x∑ ⋅w(x, ′x )

• many (not all) denoising techniques work like this
• idea: average a number of similar pixels to reduce noise

• question/difference in approach: how similar are two noisy pixels?



Denoising – Most General Approach

idenoised (x) = 1
w(x, ′x )

all pixels ′x∑ inoisy( ′x )
all pixels ′x∑ ⋅w(x, ′x )

1. Local, linear smoothing
2. Local, nonlinear filtering

3. Anisotropic diffusion

4. Non-local methods



Denoising – 1. Local, Linear Smoothing

• naïve approach: average in local neighborhood, e.g. using a Gaussian 
low-pass filter

w(x, ′x ) = exp − ′x − x 2

2σ 2

⎛

⎝⎜
⎞

⎠⎟

idenoised (x) = 1
w(x, ′x )

all pixels ′x∑ inoisy( ′x )
all pixels ′x∑ ⋅w(x, ′x )



Denoising – 2. Local, Nonlinear Filtering

• almost as naïve: use median filter in local neighborhood

idenoised (x) = median W inoisy , x( )( )

small window of image        centered atinoisy x



Denoising

noisy image (Gaussian, σ=0.2) 

Gaussian Median

σ=0.1 

σ=0.3 

σ=0.5 

w=1 

w=3 

w=5 



original Gaussian filtering bilateral filtering

81Denoising – 3. Bilateral Filtering



input

*

*

*

output

Why is the output so blurry?

82

Gaussian kernel

Denoising – 3. Bilateral Filtering



input

Gaussian kernel

*

*

*

output

Blur kernel averages across edges

83Denoising – 3. Bilateral Filtering



input

bilateral filter kernel

*

*

*

output

Do not blur if there is an edge! How does it do that?

84Denoising – 3. Bilateral Filtering



Denoising – 3. Bilateral Filtering

• more clever: average in local neighborhood, but only average similar 
intensities!

  

w(x, ′x ) = exp −
′x − x

2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅exp −

inoisy ′x( )− inoisy x( ) 2

2σ i
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

idenoised (x) = 1
w(x, ′x )

all pixels ′x∑ inoisy( ′x )
all pixels ′x∑ ⋅w(x, ′x )

spatial distance distance of intensities



Denoising – Gaussian Filter
J: filtered output (is blurred)
f: Gaussian convolution kernel
I: step function & noise



Denoising – Bilateral Filter
J: filtered output (is not blurred)
f: Gaussian convolution kernel
I: noisy image (step function & noise) difference in intensity as scale!
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Denoising – Bilateral Filter

original image bilateral filter = “edge-aware smoothing”



Denoising – Bilateral Filter

noisy image bilateral filter = “edge-aware smoothing”



Exploring the bilateral filter parameter space

input

ss = 2

ss = 6

ss = 18

sr = 0.1 sr = 0.25
sr = 8 

(Gaussian blur)
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Denoising

noisy input bilateral filtering median filtering

91



Contrast enhancement

input sharpening based on 
bilateral filtering

sharpening based on 
Gaussian filtering

How would you use Gaussian or bilateral filtering for sharpening?
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Photo retouching
93



Photo retouching

original digital pore removal (aka bilateral filtering)

94



Before
95



After
96



Close-up comparison

original digital pore removal (aka bilateral 
filtering)
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Cartoonization

input cartoon rendition

98



Cartoonization

How would you create this effect?

99



Cartoonization

edges from bilaterally filtered image bilaterally filtered image

+ =

cartoon rendition

Note: image cartoonization and abstraction are very active research areas.
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101Denoising – 4. Non-local Means



Denoising – 4. Non-local Means
• define distance between global 

image patches

• average distant pixels with similar 

neighborhood! 

idenoised (x) = inoisy( ′x )
all pixels ′x∑ ⋅w(x, ′x )
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𝑤(𝑝, 𝑞)

𝑤(𝑝, 𝑟)

𝑤(𝑝, 𝑠)



Denoising – 4. Non-local Means

• very powerful approach: exploit self-similarity in image; average pixels 
with a similar neighborhood, but don’t need to be close à non-local

w(x, ′x ) = exp −
W inoisy , x '( )−W inoisy , x( ) 2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

idenoised (x) = 1
w(x, ′x )

all pixels ′x∑ inoisy( ′x )
all pixels ′x∑ ⋅w(x, ′x )
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Denoising – 4. Non-local Means
noisy Gaussian filtering anisotropic filtering

TV bilateral filtering NL-means
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Everything put together
Gaussian filtering

Bilateral filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance

Non-local means
Smooths similar patches no matter how far away

Only depends on intensity distance



Denoising – Other Non-local Method BM3D
• find similar image patches and group them in 3D blocks

• apply collaborative filter on all of them:

• DCT-transform each 3D block

• threshold transform coefficients

• inverse transform 3D block
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Denoising
• many methods for denoising (check Buades 2005): 

• filtering wavelet or other coefficients

• total variation denoising

• patch-based or convolutional sparse coding …

• state of the art: non-local methods, in particular BM3D



Gamut Mapping

Need to map from camera gamut 
to standard gamut (sRGB). 

Different ways of projecting the 
colors lead to different camera 
modes (e.g., vivid, portrait, 
landscape, etc.).

Internally, we transform from 
camera XYZ->CIE XYZ and 
eventually sRGB



Gamma Correction
• from linear 10/12 bit to 8 bit (save space)
• perceptual linearity for optimal encoding with specific bit depth

• sensitivity to luminance is roughly γ=2.2

perceptually 
linear spacing!



Gamma Correction in sRGB
• standard 8 bit color space of most images, e.g. jpeg
• roughly equivalent to γ=2.2

CsRGB =
12.92Clinear Clinear ≤ 0.0031308

(1+ a)Clinear
1/2.4 − a Clinear > 0.0031308

⎧
⎨
⎪

⎩⎪
a = 0.055

linear

gamma

γ=2.2
CsRGB



Compression – JPEG (joint photographic experts group)

jpeg – ps quality 0 jpeg – ps quality 2 original



Compression – JPEG (joint photographic expert group)

1. transform to YCbCr
2. downsample chroma components Cb & Cr

• 4:4:4 – no downsampling

• 4:2:2 – reduction by factor 2 horizontally

• 4:2:0 – reduction by factor 2 both horizontally and vertically

3. split into blocks of 8x8 pixels
4. discrete cosine transform (DCT) of each block & component

5. quantize coefficients

6. entropy coding (run length encoding – lossless compression)



Compression – JPEG (joint photographic expert group)

DCT basis functions RLE of “same frequency” coefficients

w
ik

ip
ed

ia



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic expert group)

http://xiph.org/~xiphmont/demo/daala/demo1.shtml



Compression – JPEG (joint photographic experts group)

jpeg – ps quality 0 jpeg – ps quality 2 original



Image Processing Pipeline

demosaicking gamut 
mappingdenoising
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 im
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compression

… … …



Homework 2

• calculate and plot depth of field of different cameras

• implement a simple image processing pipeline in Python and 

explore demosaicking, denoising, etc.



Next: Math Review

• sampling
• filtering

• deconvolution

• sparse image priors
• …
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