

Problem Session 5

Deep Learning and Neural Networks

Gradient Descent and Backpropagation

Hyperparameter search

Wiener Deconvolution + Deep Learning

See notes for detailed derivations!

A fancy way of calculating the derivative via the chain rule.

$$\mathbf{x} \xrightarrow{f} \mathbf{h} \xrightarrow{g} \mathbf{y} \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{y}} \cdot \frac{\partial g}{\partial \mathbf{h}}(\mathbf{h}) \cdot \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})$$

 h and y are computed in the forward pass, derivatives are computed in the backward pass

- Forward and backward passes for Linear and ReLU functions
 - Working with row vectors, not column vectors.

Analytic gradients for gradcheck

Train a simple network to do image inpainting

Task 1: Gradient of Vector w.r.t. Vector

$$h = gW^{T}$$

$$h_{i} = \sum_{j} W_{ij}g_{j}$$

$$\frac{\partial \mathcal{L}}{\partial g_{j}} = \sum_{i} \frac{\partial h_{i}}{\partial g_{j}} \frac{\partial \mathcal{L}}{\partial h_{i}}$$

$$\frac{\partial \mathcal{L}}{\partial g_{j}} = W_{ij}$$

$$\frac{\partial \mathcal{L}}{\partial g_{j}} = \sum_{i} W_{ij} \frac{\partial \mathcal{L}}{\partial h_{i}}$$

$$\frac{\partial \mathcal{L}}{\partial q} = \frac{\partial \mathcal{L}}{\partial h} W$$

Takeaway: Gradient is the matrixvector product of the upstream gradient and the weight matrix

Task 1: Gradient of Vector w.r.t Matrix

$$h = gW^{T}$$

$$h_{i} = \sum_{j} W_{ij}g_{j}$$

$$\frac{\partial \mathcal{L}}{\partial W_{jk}} = \sum_{i} \frac{\partial h_{i}}{\partial W_{jk}} \frac{\partial \mathcal{L}}{\partial h_{i}}$$

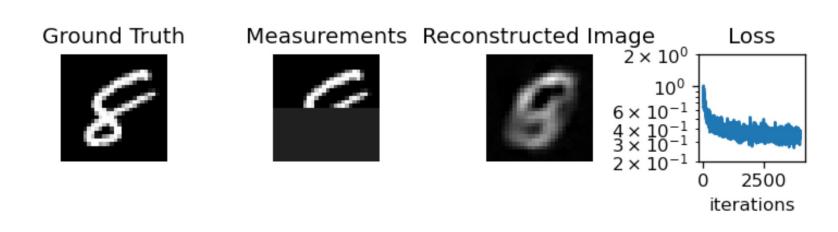
$$\frac{\partial h_{i}}{\partial W_{jk}} = \begin{cases} g_{k} & i = j \\ 0 & i \neq j \end{cases}$$

$$\frac{\partial \mathcal{L}}{\partial W_{jk}} = \frac{\partial h_{j}}{\partial W_{jk}} \frac{\partial \mathcal{L}}{\partial h_{j}}$$

$$rac{\partial \mathcal{L}}{\partial W} = \left(rac{\partial \mathcal{L}}{\partial h}
ight)^T g$$

Takeaway: Gradient is the outer product of the upstream gradient and the input vector

```
class LinearFunction(Function):
    astaticmethod
    def forward(ctx, input, weight, bias):
        # we will save the input, weight, and bias to help us calculate the
        # gradients in the backward pass
        ctx.save_for_backward(input, weight, bias)
        # return the output of the linear layer
        return input.mm(weight.T) + bias[None, :]
    astaticmethod
    def backward(ctx, grad_output):
        # retrieve the saved variables from the context
        input, weight, bias = ctx.saved_tensors
```



Reconstructed Images

Task 2: Ablation Study

- A tool to evaluate the importance of a component of a neural network.
 - By seeing what happens when we remove it.
- Use a validation dataset to assess if the change works or not
 - Data not seen during training
- Note: Adam Optimizer (usually better than gradient descent)
- Tip: Read the starter code carefully! Most of the stuff is already there.
 - Use train() -> Returns a trained model, given hyperparameter settings
 - Use evaluate_model() -> Evaluates a model on a fixed noise level

Task 2: Ablation Study

		PSNR (dB)			
Uses Bias?	Hidden Channels	$\sigma = 0.01$	σ = 0.1	σ = 0.2	
✓	32	31.09	29.47	22.40	
•	64	30.97	29.73	21.41	
×	32	32.48	29.20	24.90	
×	64	33.05	29.61	25.58	

Task 3: Wiener Deconvolution + Deep Learning

- Comparing
 - Wiener Deconvolution only
 - Neural Network only
 - Wiener + Neural Network
- We provide:
 - Wiener deconvolution function (wiener_deconv())
 - Two pretrained neural networks (load_models())
 - One trained to deconvolve and denoise
 - One trained to denoise the output of Wiener deconvolution
- Simulate the noise and apply all three methods to the noisy image!

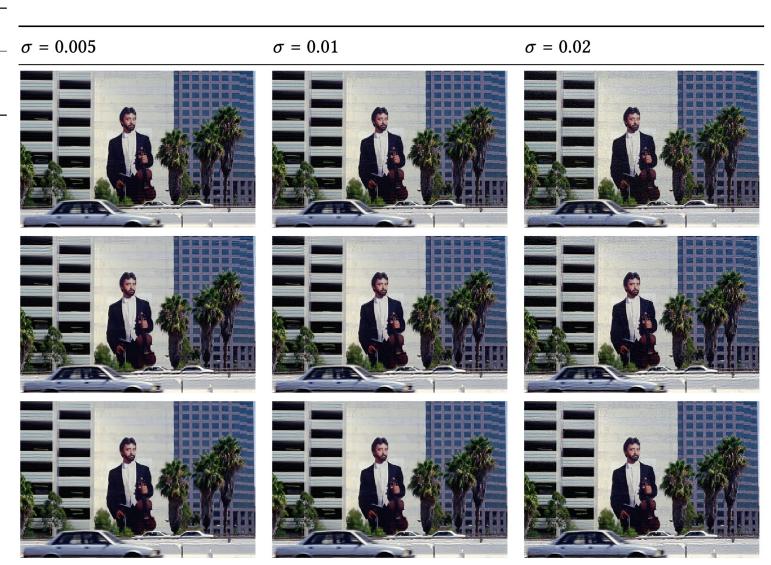
Task 3: Wiener Deconvolution + Deep Learning

	PSNR (dB)		
	$\sigma = 0.005$	σ = 0.01	$\sigma = 0.02$
Method 1	32.16	28.14	22.86
Method 2	29.17	28.54	25.33
Method 3	30.89	30.28	27.60

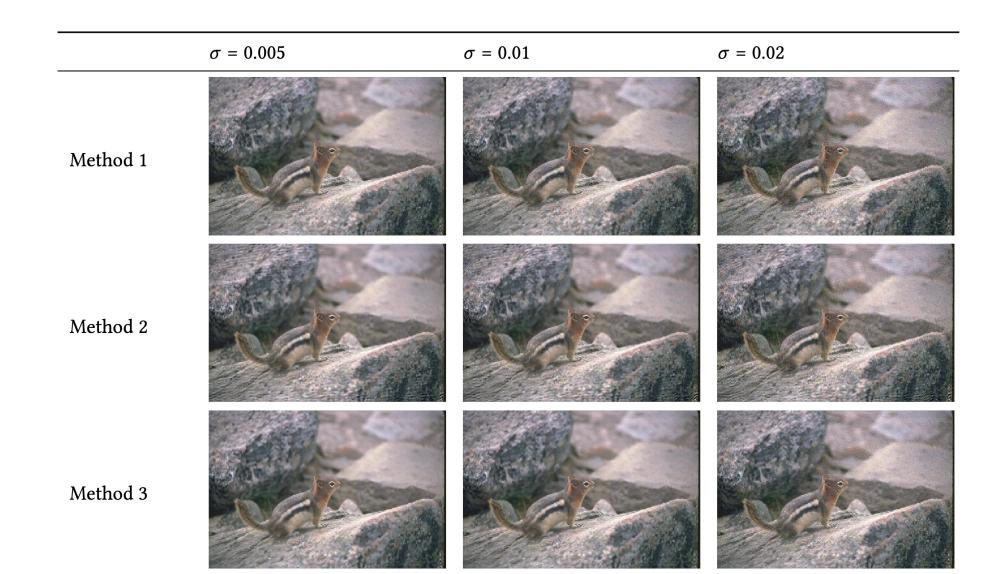
Method 1

Method 2

Method 3

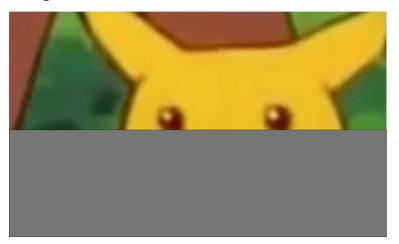


Task 3: Wiener Deconvolution + Deep Learning



Me: *forgets how backpropagation works*

My model:



Good luck with the homework!