Problem Session 3

Topics

- Image Filtering
 - Spatial domain vs. Fourier Domain
 - Low pass and high pass
- Deconvolution and Inverse Filtering
 - Fourier-based
 - Standard
 - Wiener Deconvolution
- Gradient Descent

Task 1: Image filtering

Primal domain vs. Fourier domain

• Primal: $I(x, y) \rightarrow I(x, y) * PSF(x, y)$ Point spread function

• Fourier domain: $\tilde{I}(\omega_x, \omega_y) \to \tilde{I}(\omega_x, \omega_y) \times OTF(\omega_x, \omega_y)$ Optical transfer function

Task 1: Image Filtering

- Primal Domain vs. Fourier domain
- Helpful functions: scipy.signal.convolve2d, fspecial_gaussian_2d, pypher.psf2otf, numpy.fft.fft2, numpy.fft.ifft2
- Notice that the time of the convolution increases as the PSF becomes larger, while the time of the Fourier domain computation remains similar and independent of kernel size
- Normalize the filter so it sums to 1
- You can implement high pass filtering as:

$$I-I*PSF_{LP}$$
 $\widetilde{I} imes (1-OTF_{LP})$ Fourier Domain

Task 1: Image filtering

Example of results:

• Primal and dual results look similar

Why are we seeing this behavior?

Example of results

What is the best h' (or H')?

Simply using H' = 1/H will (usually) amplify noise and destroy the image. Why?

For HW:

- First, blur the image with a Gaussian kernel (primal or Fourier domain)
- Add random noise: I=I+sigma.*randn(size(I));
- Reconstruct the image by
 - 1. Dividing by the blur kernel (OTF) in Fourier domain (simple inverse filtering)
 - 2. Wiener deconvolution, which is almost the same as inverse filtering, but uses a damping factor in the Fourier domain that depends on the noise

$$H' = \frac{1}{H} \cdot \frac{|H|^2}{(|H|^2 + 1/SNR)}$$
 $SNR = \frac{\bar{I}}{\sigma_{noise}}$ Average pixel value of noisy image

Task 2: Results

Frequency response of a Wiener filter

$$G' = \frac{1}{G} \cdot \frac{|G|^2}{(|G|^2 + k)}$$

Higher Noise \rightarrow Lower SNR \rightarrow More damping \rightarrow less noise amplification

The Wiener filter is the solution (x) that minimizes the mean square error between the image and its estimation:

$$\mathbf{E} \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2$$

an analytical derivation results in the Wiener filter.

Helpful link:

https://web.stanford.edu/class/archive/ee/ee264/ee264.1072/mylecture12.pdf

Calculate the mean squared error (MSE) and the peak signal-to-noise ratio (PSNR):

$$MSE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[I_{original}(i,j) - I_{restored}(i,j) \right]^{2}$$

$$PSNR = 10\log_{10}\left(\frac{\max(I_{original})^2}{MSE}\right)$$

Example of results

Wiener deconvolution

A general algorithm for solving an optimization problem of the form

$$\begin{array}{ll}
\text{minimize} & f(x) \\
x
\end{array}$$

- Idea: Move in the direction of the negative gradient
 - the direction in which the function is most steeply decreasing
 - Alpha (α) is the step size (or the "learning rate")

$$x^{(k+1)} \leftarrow x^{(k)} - \alpha \nabla f(x^{(k)})$$

Apply to the equation

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} ||Ax - b||_{2}^{2}$$

- A: Linear operator representing the image formation model (or forward model)
- b: Observed measurements (noisy image)
- x: Desired reconstruction variable

Residual
$$\boxed{\frac{1}{2}\|Ax-b\|_2^2} = \frac{1}{2}x^TA^TAx - x^TA^Tb + \frac{1}{2}b^Tb$$

$$\nabla_x \left\lceil \frac{1}{2} \|Ax - b\|_2^2 \right\rceil = \boxed{A^T Ax - A^T b} \quad \text{Gradient}$$

```
def grad_l2(A, x, b):
    # TODO: return the gradient of 0.5 * || Ax - b || _2^2
    return None

def residual_l2(A, x, b):
    return 0.5 * np.linalg.norm(A 0 x - b)**2
@ = matrix multiply
```

$$x^{(k+1)} \leftarrow x^{(k)} - \alpha \nabla f(x^{(k)})$$

Task 3: Stochastic Gradient Descent

- General case: $x^{(k+1)} \leftarrow x^{(k)} \alpha g(x^{(k)})$ $\mathbb{E}[g(x)] = \nabla f(x)$
- In the context of least squares, can express the objective as a sum of scalar residuals: $\frac{n}{n}$

$$||Ax - b||_2^2 = \sum_{i=1}^n (a_i^T x - b_i)^2$$

- Choosing a subset of rows of A and b === descending on a subset of these residuals
 - The number of rows is the **batch size**.
- Use np.random.randint to select random indices for the A matrix

Pass functions as arguments

- Python stuff:
 - Functions as arguments to other functions
 - Multiple return
 values with return
 a, b
 - and unpacking with a, b = func()
 - time.time()

```
def run_gd(A, b, step_size=1e-4, num_iters=1500, grad_fn=grad_l2, residual=residual_l2):
    ''' Run gradient descent to solve Ax = b
   Parameters
   A : matrix of size (N_measurements, N_dim)
   b : observations of (N_measurements, 1)
   step_size : gradient descent step_size
   num iters : number of iterations of gradient descent
   grad fn : function to compute the gradient
   residual: function to compute the residual
   Returns
       output matrix of size (N_dim)
   residual
       list of calculated residuals at each iteration
       time to execute each iteration (should be cumulative to each iteration)
```

to compute residual.

convergence in wall clock time may

vary!