50
S

Computer Science Computational Imaging
B8 B8

%2 UNIVERSITY OF TORONTO CSC2529

Problem Session 3

Topics

* Image Filtering
e Spatial domain vs. Fourier Domain
 Low pass and high pass

* Deconvolution and Inverse Filtering

 Fourier-based

e Standard
e Wiener Deconvolution

e @Gradient Descent

Task 1: Image filtering

Primal domain vs. Fourier domain

* Primal: I(x,y) - I(x,y) * PSF(x,y)

Point spread function

* Fourier domain: [(wy, wy) = I(wy, wy) X OTF (wy, wy)

Optical transfer function

Task 1: Image Filtering

e Primal Domain vs. Fourier domain

* Helpful functions: scipy.signal.convolve?2d,
fspecial gaussian 2d, pypher.psfZotf, numpy.fft.fft2,
numpy.fft.1££ft2

* Notice that the time of the convolution increases as the PSF becomes larger,
while the time of the Fourier domain computation remains similar and
independent of kernel size

* Normalize the filter soit sumsto 1
* You can implement high pass filtering as:

I—I*PSFLP]X(l—OTFLp)

Primal Domain Fourier Domain

Task 1: Image filtering

Example of results:
 Primal and dual results look similar

Spatial blur with 0=15 Fourier blur with =15

Why are we seeing

Task 1: Image filtering this behavior?

Example of results

Lowpass filter runtime comparison

Bl spatial domain
B Fourier domain

Spatial blur with sigma = 10 Fourier blur with sigma = 10 OTF with sigma = 10

109 -

1071 -

) -: I I I l
0.1 1 10 0.1 1 10

sigma

Runtimes in seconds

Task 2: Deconvolution and Inverse Filtering

n{xy)
h{xy) Oi h’(xy)
f(xy) H(ox, o) gxy) L@ 0 | pixy)
Degradation Restoration

What is the best h’ (or H’)?

Simply using H = 1/H will (usually) amplify noise and destroy the
Image. Why?

Task 2: Deconvolution and Inverse Filtering

OTF

Task 2: Deconvolution and Inverse Filtering

For HW:
* First, blur the image with a Gaussian kernel (primal or Fourier domain)
* Add random noise: I=I+sigma.*randn (size (I));

* Reconstruct the image by

1. Dividing by the blur kernel (OTF) in Fourier domain (simple inverse filtering)

2. Wiener deconvolution, which is almost the same as inverse filtering, but uses
a damping factor in the Fourier domain that depends on the noise

_ Average pixel value of
1 |H|? I noisy image
SNR =

H =—-
H (|H[?+ 1/SNR) Onoise

ask 2: Results

Blurred image with sigma = 0 Blurred image with sigma = 0.01

Wiener filtering, PSNR = 106.3 dB Wiener filtering, PSNR = 25.9 dB

Blurred image with sigma = 0.001 Wiener filtering, PSNR = 26.6 dB Blurred image with sigma = 0.1 Wiener filtering, PSNR = 19.7 dB

Task 2: Deconvolution and Inverse Filtering

Frequency response of a Wiener filter

-100 -75 50 -25 00 25 50 7.5 100
0

Higher Noise - Lower SNR - More damping = less noise amplification

Task 2: Deconvolution and Inverse Filtering

The Wiener filter is the solution (x) that minimizes the mean square
error between the image and its estimation:

Ellx — 213

an analytical derivation results in the Wiener filter.

Helpful link:
https://web.stanford.edu/class/archive/ee/ee264/ee264.1072/mylecture12.pdf

https://web.stanford.edu/class/archive/ee/ee264/ee264.1072/mylecture12.pdf

Task 2: Deconvolution and Inverse Filtering

Calculate the mean squared error (MSE) and the peak signal-to-noise
ratio (PSNR):

m n

1 2

MSE:_ZZ | H X

mn e orlgmal(l J) restored (i])]
i=1j=

max (1, ;i inq1)?
PSNR = 1010g10((orlgmal))

MSE

Task 2: Deconvolution and Inverse Filtering

Example of results

Inverse Wiener deconvolution

Blurred image with noise, o = 0.001

Image after inverse filtering, PSNR = -156.5669 dB

Image after Wiener deconvolution, PSNR = 26.6101 dB

‘ ‘ 200 g

100 200 300 400 500 100 200 300 400 500

Task 3: Gradient Descent

* A general algorithm for solving an optimization problem of the form

minimize f(x)
X

* |dea: Move in the direction of the negative gradient
* the direction in which the function is most steeply decreasing
* Alpha (a) is the step size (or the “learning rate”)

T 2R oV f (™)

Task 3: Gradient Descent

* Apply to the equation

1
minimize =|Ax — bl|3
x 2

* A:Linear operator representing the image formation model (or
forward model)

* b: Observed measurements (noisy image)

e X: Desired reconstruction variable

Task 3: Gradient Descent

I 1 1
Residual ||| Az — b][3|= SaT AT Az — 2T AT+ b7

Va éHAx —b||5| =|AT Az — A'b| Gradient

grad_12(A, x, b):
TODO:

@ = matrix multiply

residual_12(A, x, b):
0.5 * np.linalg.norm(A @ x - b)#x2

Vanilla Gradient Descent
e F D () oV f(2R))

Task 3: Stochastic Gradient Descent

» General case: zFtY) « £ (B) — qg(2F)) Elg(x)] = Vf(z)

* |n the context of least squares, can express the objective as a sum

of scalar residuals: n
Az —bl5 = > (af z — b))
1=1
* Choosing a subset of rows of A and b === descending on a subset of

these residuals
e The number of rows is the batch size.

e Use np.random.randint to select random indices for the A matrix

TaSk 3: Gradient Descent Pass functions as arguments

run_gd(A, b, step_size=le-4, num_iters=1500, grad_fn=grad_12, residual=residual_12):

e Python stuff:

* Functions as
arguments to other
functions

 Multiple return

values with return
a, b

* and unpacking with
a, b = func/()

® time.time () /

Multiple return values

Task 3: Gradient Descent

residual

105 4
103 -
mm S\/D
| —— GD
—— SGD B=10
—— SGD B=100
10! - —— SGD B=1000
101 1
0 200 400 600 800 1000 1200 1400
iteration

Use full A matrix, not subsampled A,
to compute residual.

residual

—— GD
—— SGD B=10
—— SGD B=100
10° _
—— SGD B=1000
103 i
101 i
10—1 .
101 100 101 102 103 104

time (ms)

Note: Exact runtimes and order of
convergence in wall clock time may
vary!

