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Abstract—Spatial Frequency Domain Imaging (SFDI) is an emerging optical technique that non-invasively images tissue optical
properties by measuring how tissues modulate a sinusoidal illumination pattern. It requires capturing at least 3 images per spatial
frequency, limiting its real-time capabilities. Here, we investigate the optimization of illumination patterns to sample tissues at multiple
frequencies in a single snapshot. We investigate the effects of the angle between superimposed spatial frequencies in the Single
Snapshot Multiple frequency Demodulation (SSMD) technique and conclude that 45°performs the best as it balances aliasing and
padding artifacts. We also investigate the use of multiplexed patterns in the Single Snapshot Optical Properties (SSOP) technique. We
find that increasing the multiplexing frequency decreases accuracy due to diffusion between multiplex boundaries, though this

performance is somewhat recoverable through vertical deblurring.

1 INTRODUCTION

ISSUE OXYGENATION is the measure of oxygen-
T saturated hemoglobin concentration in blood. It allows
us to quantitatively assess metabolism and heart functions,
and is widely used in clinics to track cardiovascular and
respiratory disease progression. Since tissue behaves as a
turbid media under illumination, its optical properties may
be extracted from its diffuse reflectance. (De)oxygenated
blood has a distinct optical signature under near-infrared
(NIR) illumination, so blood oxygenation can be measured
from tissue optical properties.

Spatial Frequency Domain Imaging (SFDI) is an emerg-
ing technique which takes advantage of recent advance-
ments in Digital Micromirror Devices (DMD) and other Spa-
tial Light Modulator (SLM) technologies to non-invasively
produce wide-field images of tissue optical properties [1].
In SFD], incident light is coded by a DMD to project 2D
sinusoidal patterns onto tissue. The tissue’s optical response
to the illumination pattern is then collected by a camera to
sample the tissue’s modulation transfer function (MTF) at
the modulating frequency. The tissue’s MTF can be mapped
to its optical properties (absorption and effective scattering
coefficients, p, and u’ respectively), which are used to
estimate oxygenated blood concentrations. To recover MTF,
the reflected light needs to be demodulated, or measuring
the amplitude envelope and DC shift of the reflected light.
To demodulate in SFDI, at least 3 phase-shifted patterned
images must be captured while the sample is stationary for
each modulation frequency, which limits SFDI’s real-time
imaging capabilities.

Recent improvements of SFDI reveal the potential of de-
modulation with only one image, enabling real-time wide-
field imaging of tissue optical properties. However, all of
these SFDI-based techniques use simple illumination pat-
terns despite the complex illumination pattern capabilities
of DMDs. In our study, we analyse and extend two such
methods, Single Snapshot Optical Properties (SSOP) [2] and
Single Snapshot Multi-frequency Demodulation (SSMD) [3],
with multiplexed and angled illumination patterns to enable
and optimize single-snapshot multifrequency SFDI.

Output

Camera . .....cuu. SRS > m
. Input
P_rolec!or '“ l Demodulation
“/« ‘¢

& calibration

N

Spatial Frequency, k (mar’)

=MTF (k)

Optical properties
extraction

Scattering
B

v
y

Absorption

Fig. 1: Typical SFDI system. Adapted from [4].

2 RELATED WORK

In recent years, there have been many attempts to reduce the
number of images required in SFDI. SSOP technique from
Vervandier et al. [2] uses low-pass and high-pass filters to
extract the DC component and demodulate the AC compo-
nent respectively. While this method results in more noise
and depth variation artifacts, van de Giessen from the same
group later used an orthogonally superimposed sinusoidal
pattern to measure and correct for depth variations [5]. The
Multifrequency Synthesis and Extraction (MSE) technique
from Nadeau et al. projects a square wave pattern and
extracts AC components from its harmonic frequencies to
acquire 4 AC frequencies from 2 images with increased noise
in higher-frequency harmonics [6]. The SSMD technique
from Xu et al. superimposes multiple sinusoidal spatial
frequencies at 45°to sample both frequencies in a single
snapshot with less noise than SFDI in homogeneous samples
[3], [7]- The characteristics of these SFDI variations are
summarized in Tab. 1.

More broadly, similar structured light approaches have
been applied to other problems in computational imaging.



TABLE 1: Summary comparison of select SFDI-based techniques.

Technique Ilumination Pattern Demodulation Frequencies Image Quality
sampled per
image
SFDI [1] Axis-aligned 2D sinusoidal Averaging 3+ phase-shifted 2/3 =0.67 Low noise,
images. minimal
artifacts
SSOP [2], [8] Axis-aligned 2D sinusoidal Low-pass/high-pass filter 2/1=2.00 Moderate
DC/AC components in single noise,
image depth-variation
artifacts
SSMD [3], [7] 2 spatial frequencies Sliding window average of unit | 3/1 =3.00 Low noise in
superimposed at an angle cells. homogenous
samples
MSE [6] Axis-aligned 2D square wave Extract harmonics of square 4/2=2.00 Noise/ artifacts
wave to sample multiple increases as
frequencies sampled
harmonic
frequency
increases
Nayar et al. demonstrates to usage of high frequency stripe
patterns to separate direct and indirect light reflection in a V32
scene [9]. O'Toole et al. uses optimized coded masks, allow- Mac(xi, fz) = ?{[I 1) — L(x))?

ing direct/indirect light separation in a single snapshot in
EpiScan3D [10].

In summary, recent SFDI-based techniques have at-
tempted to reduce the number of required images to sam-
ple the tissue’s MTF at multiple spatial frequencies at the
cost of increased noise and artifacts. Simultaneously, ad-
vancements in direct/indirect light separation techniques
have moved beyond simple striped patterns and towards
optimized coded illumination patterns. Hence, we believe
that multifrequency optimized illumination patterns can be
implemented in SFDI for high-quality single snapshot tissue
property measurements.

3 PROPOSED METHOD
3.1 SFDI Theory

To understand how our illumination and demodulation
methods differ, we first introduce fundamental SFDI theory.
SFDI uses DMD modulated light to extract tissue properties.
The incident pattern is a sinusoidal AC on top of a back-
ground DC, since it is impossible to create negative intensity.
Formula (1) shows the x-direction modulation with single
AC frequency f, and DC intensity Iy/2, where I is the
intensity of the illumination pattern.

= %(cos @nfoz) +1) 1)

The measured diffuse reflected light contains both DC mod-
ulation, Mp¢c, and AC modulation, M 4¢, from the tissue
MTE. With the three-phase method, the DC and AC compo-
nents can be computed using formula (2) (3), where I3, I5, I3
are the three phase-shifted measured images. Intuitively, we
are averaging the phase shifted images to recover the DC
shift and amplitude envelope.

Mpc(zi) = %[11(351) + Ir(x;) + I3(x;)] 2
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For homogenous samples, Mpc and M 4c are constants
over the whole image. Therefore, we can assess demodu-
lation quality by comparing the standard deviation against
the average signal. To map Mpc, Mac to the diffuse re-
flectance curve R,(f.), we normalized them to the theo-
retical DC illumination reflectance of a tissue phantom of
known optical properties. Finally, values of R4(f,) can be
mapped to optical properties p,, i, using a lookup table
(LUT) generated from light transport simulations. In our
project, we image a tissue phantom of known optical prop-
erties. Hence, we can compare our results with a theoretical
curve given by formula (4) derived in [1].

3Ad
(e s g/ br + 1) (e pp/ pier + 3A)

In the equation above, 4, d’, p/ 7+ Hir depend on intrin-
sic properties p}, p1),, and refractive index n. This provides
an opportunity to calculate the density of absorbing media
such as (de)oxygenated blood in tissue based on diffuse
reflectance measurements.

Rd(fz) =

(4)

3.2 lllumination Patterns

Standard SFDI and SSOP uses 2D sinusoidal patterns for
illumination. For our project, we explore the possibility
of multiplexing frequencies in a layered pattern inspired
by Nayar et al.’s high frequency stripe patterns in di-
rect/indirect light separation [9]. Here, we test multiplexing
4 AC frequencies (0.1, 0.2, 0.3, 0.4 mm™1!). Our multiplexed
patterns are shown in Fig. 2.

For SSMD, two sinusoidal patterns are overlapping,
where each frequency is chosen specifically to form repeat-
ing unit cells. With an angle ¢ in between, the combined
pattern can be written as formula (5):
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Fig. 2: Sample multiplex pattern illumination masks pro-
grammed onto the DMD.

I
L= Eo(cos(wamx) +1),

I
I, = Eo(cos(Qﬂfdd) +1), ®)
Iangled = Il + I2

Where I is the tilted pattern, whose wave function is
linked with 6 in formula (6).

_ fe
fa= cosf’ (6)
d = cos 0z + sin Oy

The resulting pattern is shown in Fig. 3, where red
lines indicate wavefronts of each component (angles in the
produced patterns are not exact due to DMD pixel shape,
but the projected patterns will have exact 30°and 60°angles).

We also examine the effects of multiplexing more fre-
quencies in a single image, or overlapping two patterns with
different angles (15°, 30°, 45°, 60°, 75°) in between. More
details about which pattern is the optimum are presented in
Section 4.1.

3.3 Demodulation Methods

Due to our modified illumination patterns, our demodula-
tion methods must also change appropriately. We describe
them in this section.

3.3.1 Multiplex SSOP

Our variation of SSOP using vertically multiplexed spatial
frequencies involves a vertical deblurring step followed by
line-by-line deconvolution by low /high-pass filtering.
Since the goal of SFDI is to sample tissue properties by
how tissue modulates a projected illumination pattern, the
blur resulting from diffuse reflectance contains important
optical information that cannot be filtered. However, blur-
ring the boundaries between different regions of spatial fre-
quencies is undesirable as it causes low frequencies to bleed
over boundaries and overpower high frequency reflectance
(Observed in Section 4.3). Therefore, we apply Maximum
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Fig. 3: Sample angled pattern illumination masks pro-
grammed onto the DMD. Red lines indicate wavefronts of
superimposed frequencies.
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Likelihood Deconvolution (MLD) [11] to each column of
pixels (orthogonal to spatial frequency pattern direction)
independently to estimate and deconvolve a 1x15 vertical
blurring PSFE. This allows us to preserve the horizontal
diffusion blurring while sharpening the boundaries between
multiplexed spatial frequencies.

Using the vertically-deblurred images, we apply line-by-
line SSOP as described by Vervandier et al. [2]. For each hor-
izontal line of pixels in the captured image, we compute the
Fast Fourier Transform (FFT). Then, we detect the strongest
AC frequency peak (2nd highest peak after the DC peak)
assumed to be the spatial frequency projected onto that line.
We then apply an ideal low-pass filter to extract the DC
spectrum of the line, and an ideal one-sided high-pass filter
with cutoff frequency f. corresponding to the nearest local
minimum to the AC peak. We then compute the Inverse
Fast Fourier Transform (IFFT) of the DC/AC spectrums to
recover DC/AC images. We note that due to the one-sided
high-pass filter, the AC peak is demodulated after IFFT
(shifted to fx=0). Fig. 4 visualizes the deconvolution process.

3.3.2 SSMD

For SSMD, the demodulation is performed with a sliding
window about each pixel. It can be noticed from the pattern
that rectangular repeating boxes exist. DC and AC can be
extracted pixel-by-pixel using formula (7).

In formula (7), o represents the area enclosed by the
box around each pixel, with Ty = 1/f,,T> = 1/f,. It also
implies Ipc to be the average signal strength inside the box,
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Fig. 5: SFDI optical setup developed by Kuramoto [12].
Optical path is drawn with coloured arrows corresponding
to originating component labels.

while I 5¢ is the average strength of the alternating signal of
the given frequency. The sliding window size, T} x T, also
represents resolution of this method.

3.4 Experimental Setup
3.4.1 Optical Setup

This work utilizes an existing SFDI optical setup developed
by Kuramoto et al. from our group, based on the open-
source SFDI guide OpenSFDI [12], [13]. Fig 5 shows a
labelled diagram of this setup. While the diagram image
is taken with lights on for visual clarity, experiments were
conducted in the dark to minimize ambient lighting on the
tissue phantom. A 660nm LED illuminates a DLP 4500 DMD
(Texas Instruments) to project our illumination patterns.
The projected patterns are magnified 25x with a convex
lens and reflected by a mirror onto the sample, imaged by
an overhead Rolera EM-C? EM-CCD camera (QImaging)
equipped with a camera lens (Nikon) placed 26 cm away
from the sample. This is done so that the DMD patterns
are sufficiently large to maximize illumination area on the
sample as well as maximize camera FoV coverage. To reduce
specular reflections from the tissue phantom, we introduce
crossed polarizers between the illuminating pattern and the
camera. Relevant optical setup parameters are shown in Tab.
2,

3.4.2 Calibration

Not only must the camera be focused on the sample; the
magnified illumination pattern must also be sufficiently
sharp when projected onto the tissue as SFDI-based tech-
niques predicts tissue properties from how tissues blur

[J cos? (27 fy s + 27 fy sy)daxdy ’

@)
TABLE 2: Imaging parameters.
Rolera EM-C? Sensor size 8x8 mm
CCD Camera Pixel size 8x8 pm
(QImaging) Resolution 1004x1002 px
Field of View (FoV) 6 x 6 cm
Lens Focus distance 26 cm
(Nikon) Focal length 28 mm
Aperature size f/2.8
Physical Length per camera pixel | 0.11 mm/px
DLP 4500 Surface size 8.7x6.9 mm
DMD Pixel size 7.6x7.6 pm
(Texas Resolution (diamond px) 1140x912 px
Instruments) Physical length per DMD pixel 0.06 mm/px
Optical Path IMlumination path magnification 25x
Imaging path magnification 0.133x

TABLE 3: Tissue phantom optical properties at 660 nm.

Index of Refraction n 1.5111

Absorption Coefficient p1o [mm™—1] 0.0255
Reduced Scattering Coefficient p1; [mm—1] 1.26
Anisotropy g 0.62

projection patterns. The camera lens is focused onto the
sample by adjusting the focus ring until ruler lines on top of
the sample are the sharpest. The illumination path is focused
by projecting a grid pattern with the DMD and adjusting
until the x and y intensity profiles are the sharpest and most
uniform. We note that due to the tilt of the mirror, projected
patterns warp at the edges of the pattern and the projected
intensity drops near the bottom edge of the captured image.

3.4.3 Image Capture/Pre-Processing

For each pattern, 100 14-bit 501x502 pixel images (2x bin-
ning) are successively taken with 100 ms exposure and
averaged to remove read/shot noise effects. To remove
pattern distortions at the edges of images, we crop to the
center 300x300. Due to the high alignment sensitivity of the
multiplex pattern SSOP method, these images are digitally
unrotated to align patterns to the image coordinate axes.

3.4.4 Sample

We image a diffuse homogenous tissue phantom with opti-
cal properties summarized in Tab. 3.

3.4.5 Assessment

To assess our methods’ fit to theoretical expectations, we
compare measured reflectances against the diffusion ap-
proximation described by Formula (4). We also include 3-
phase SFDI (provided in OpenSFDI [13]) and Vervandier



et al.’s SSOP [2] as representative single spatial frequency
techniques in both multiple image and single snapshot
varieties for comparison. To normalize the 14-bit image pixel
intensities to diffuse reflectance values, we normalize each
curve such that the DC reflectance (f, = 0) matches the
theoretical DC expectation as described in Section 3.1.

3.4.6 Software

SFDI/SSOP-based and SSMD-based methods are imple-
mented and analysed in MATLAB r2022b (Mathworks) and
Python 3.7 respectively.

4 EXPERIMENTAL RESULTS

Fig. 6 shows the measured reflectance curves of our imple-
mentations of SSMD and multiplexed SSOP alongside 3-
phase SFDI, SSOP. A theoretical curve from the diffusion
approximation (Formula (4)) is also shown to serve as
the ground truth. Each point corresponds to the average
reflectance value of pixels associated with each spatial fre-
quency with error bars representing the standard deviation.

4.1 SSMD Angle Optimization

To compare results of changing angles and locate the best
angle for reflectance measurement, we fix f, = 0.lmm™*,
while making patterns with 15°, 30°, 45°, 60°and 75°angles
between the two components. The resulting images, to-
gether with their respective AC and DC signals, are shown
in Fig. 7.

By comparing the demodulation results, we conclude
that standard deviation is about 3-4% for all the aforemen-
tioned angles. However, for angles smaller than 45°, the
overlapping patterns have similar frequencies, which makes
it difficult to extract R, information through the whole f,
spectrum. In addition, The sliding window size is larger for
smaller angles, which extends the edge artifacts deep into
the image, and reduces its resolution. On the other hand,
there is noticeable amount of aliasing artifacts for larger
angle patterns. For example, in the 75°angle pattern, the
vertical fluctuation is so dense that there may not be enough
DMD pixels to fit the sine function well. In general, we
choose 45°to be the optimum angle for diffuse reflectance
measurement, and the MTF curve for SSMD is therefore
constructed based on 45°patterns with varying spatial fre-
quencies.

4.2 SSMD Frequency Sweep

From theoretical curve in Fig. 6, we notice that Ry ap-
proaches 0 mm ™! as frequency goes over 0.5 mm~1. For the
45°arrangement, the spatial frequency of the tilted pattern
can be calculated by formula (8).

fd:\/ifz (8)

Under this relationship, we choose f, to be 0.06, 0.10,
0.20, 0.30 mm~*, which gives the secondary frequency to
be 0.08, 0.14, 0.28, 0.42 mm ™. This selection of frequencies
provides an even distribution of sweeping, so we may draw
a more precise curve to reflect the trend. The resulting
reflectance for each f, after running demodulation and
calibration for the prepared patterns is included in Fig. 6.

4.3 Pattern Multiplexing with Vertical Deblurring

First, we consider the simplest multiplexed pattern case
as seen in the first column of Fig. 8, in which the spatial
frequencies are 0.1, 0.2, 0.3, 0.4 mm~!, with each region
vertically spanning 10 mm. As can be seen in the reflectance
curve in Fig. 6, the yellow SSOP curve and the green
Multiplex SSOP curve are nearly identical. In other words,
the average reflectance computed from % of a homogenous
tissue phantom image (75x300) is nearly as accurate as when
computed with four separate 300x300 images. While this
pattern would be ineffective for inhomogeneous samples
(for a hand, the tips of the fingers and base of the hand
would be sampled at a single discrete frequency), it implies
that 300x300 images can support sampling at 4 spatial
frequencies simultaneously provided each spatial frequency
occupies 75 1x300 pixel lines.

To support 4 AC frequency sampling of inhomogeneous
samples, we spread each spatial frequency pattern across
the entire FoV by increasing the frequency at which patterns
switch. Column 2 in Fig. 8 shows 256 regions with a vertical
span of 0.1 mm. Without vertical deblurring, this results
in a reflectance curve that significantly underestimates the
reflectance at all AC frequencies. Furthermore, no lines of
the image are registered to 0.4mm™!, resulting in missing
data at that spatial frequency. In the spectrum in Fig 9, we
see that the 0.4mm™" peak is small compared to the lower
frequencies despite a 0.4 mm~! frequency being projected
onto that line. Furthermore, in the histogram presented in
Fig. 10, we see that the number of lines associated to a
spatial frequency decreases as spatial frequency increases.
This occurs due to the tissue phantom diffusing lower
frequencies across boundaries of adjacent regions. While we
desire blurring in the x-axis of the image as it represents the
optical tissue response, diffusion in the y-axis causes low
frequencies to bleed into high frequency regions, negatively
impacting frequency registration and therefore undermin-
ing reflectance measurement.

The measurement is somewhat recoverable after vertical
deblurring (Fig 8, 3rd column). In Fig. 9, we see that the
strength of the 0.4 mm~! peak is recovered while the width
of the peak representing the tissue response is maintained.
We also see in Fig. 10 that while we still see frequency mis-
registration skewing the counts to lower spatial frequencies,
we can now detect the 0.4mm ™! regions. In the reflectance
curve in Fig 6, we see that while it still performs notably
worse than SSOP, the reflectance curve accuracy is some-
what improved compared to without vertical deblurring.

In summary, increasing the multiplexing frequency al-
lows us to sample the entire FoV with all spatial frequencies
but decreases the accuracy of reflectance measurement due
to tissue diffusion blurring the boundaries between differ-
ent spatial frequency regions. We have shown that this is
somewhat recoverable with our vertical deblurring method.

5 DiISCUSSION

The conclusions of the following sections are summarized
in Tab. 4.
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Fig. 6: Average diffuse reflectance by spatial frequency of homogenous tissue phantom images from the SFDI-based

methods described in this report.
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Fig. 7: DC and AC results of different angle patterns.

TABLE 4: Summary of assessment of SFDI-based techniques explored in this report.

Technique Ry Accuracy | Efficiency (f/img) | Uniformity | Complexity
SFDI High 0.67 High O(n)
SSOpP Moderate 2.00 Moderate O(nlogn)
SSMD High 3.00 High O(n?)

Mux. SSOP Moderate 5.00 Low O(nlogn)

5.1 Accuracy

For discussion, we assume the diffuse approximation result
to be the theoretical truth. From Fig, 6, 3-phase SFDI and
SSMD agree better with the theory, while SSOP methods
have relatively larger error. Since SFDI and SSMD both
extract DC signal strength based on the average tissue

response, low-frequency noise does not significantly affect
reflectance measurements. However, such noises contribute
to near-origin signal in the Fourier domain, and mix with
the DC signal in the SSOP process. As a consequence,
demodulated DC is higher than the actual DC value, which
leads to a larger normalization factor in the calibration
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process, dragging down the AC signal values.

The same phenomenon of low-frequency reflectance be-
ing smaller then expected is also observed for SFDI and
SSMD. There are two potential sources for this inaccuracy.
First, our optical setup may not be able to remove all
specular reflectance. In practice, it is impossible to illumi-
nate the phantom directly from above, otherwise the mirror
would block the FoV of camera. The small incident angle
causes the specular reflected light to possess a small z-
polarization, which cannot be completely removed with x
and y cross-polarizers in our experimental setup. Second,
tissue phantom acts as a low-pass filter [14], meaning low-
frequency light is less attenuated after multiple scattering
events. Since AC signals have non-zero spatial frequencies,
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Fig. 10: Distribution of spatial frequencies associated with
each of 300 lines in the 256 region image with and without
vertical deblurring.

which are more absorbed by the phantom than DC signals,
we may collect higher DC signal strength than the theory
predicts. In general, SSMD results coincide with SFDI, which
has a maximum error about 15% from the theoretical curve.
Comparatively, 4-region SSOP gives similar results to stan-
dard SSOP, whose maximum inaccuracy is about 50%, while
256-region SSOP gives a >80% maximum inaccuracy.

5.2 Efficiency

We define efficiency to be the number of frequencies that
can be demodulated per image taken. For both standard
SFDI and SSOP, there is only one AC signal over a DC
shift, which means we can only extract two independent
signals. However, since SFDI requires 3 phases of the same
pattern for complete demodulation, its efficiency is 2/3 =
0.67. For SSOP, only one snapshot is taken, leading to a
higher efficiency of 2/1 = 2.00. In SSMD, the illumination
pattern consists of 2 ACs and 1 DC signals, which is also
able to be demodulated with only one snapshot, resulting in
an efficiency of 3/1 = 3.00. Finally, for multiplex SSOP, we
could theoretically overlay as many frequencies as possible
depending on how large the multiplexed regions are. In our
project we multiplex up to 5 frequencies (4 AC, 1 DC), so
efficiency is 5/1 = 5.00. In conclusion, novel methods of
SFDI aim to sample the tissue at as many spatial frequencies
as possible in a single snapshot. Although multiplex SSOP
has relative low accuracy, it has the potential to combine
more frequencies, which may be an advantage if more
accurate demodulation techniques are found in the future.

5.3 Uniformity

From our results, we notice a huge difference between the
standard derivation of different methods, and we define this
parameter as demodulation uniformity. For more complete
demodulation, the resulting DC and AC would more uni-
formly span the image, which leads to a smaller standard
deviation. From Fig. 7, the percentage fluctuation in SSMD
is about 3-4%, which is the smallest among all methods.



However, we note that SSMD uses a relatively large sliding
window for averaging, which suggests that it performs
best for homogeneous samples. For inhomogeneous media,
SSMD may fail to extract local optical features. In compar-
ison, standard SFDI has about 20% uncertainty. This might
be due to the fact that using three phases is the minimum
requirement for demodulation, and uncertainty could be
reduced by using more phases (e.g 5 or 7 phases demod-
ulation). SSOP methods, on the other hand, give the worst
uniformity in demodulation, since their standard deviation
is about 50% of the mean value. With 64 regions and vertical
deblurring, the result is moderately improved, but there
still exists a considerable amount of non-uniformity due to
frequency misregistration.

5.4 Computational Complexity

SFDI is the fastest among the methods. From formula (2)
and (3), its complexity is O(n), as only weighted means are
calculated. SSOP requires an FFT to be computed for each
line of the image to filter out desired spatial frequencies,
which has a complexity of O(nlogn). Its improved version,
multiplex SSOP, also has the same complexity, but it takes
somewhat longer to compute if deblurring is applied. SSMD
has the slowest speed among all these methods. For each
pixel, a sliding window which has a size comparable to
the whole image is swept, which means it has complexity
O(n?). The speed is also dependent on the window size. For
a smaller angle as shown in Fig. 7, the height of window is
larger with the width fixed, which increases the total num-
ber of steps for demodulation. The complexity is ranked as
follows: SFDI < SSOP < Multiplex SSOP < SSMD.

6 CONCLUSION

In our project, we test different single snapshot SFDI meth-
ods in measuring the diffuse reflectance of a homogeneous
tissue phantom, and compare them based on their accu-
racy, efficiency, demodulation uniformity and complexity.
We conclude that 45°SSMD has the best accuracy and
uniformity despite being a single snapshot technique ex-
tracting 3 frequencies at once. However, its computational
time is the longest, limiting real-time capabilities. SSOP is
another single snapshot variation of SFDI, but it suffers from
low accuracy and high uncertainty. Our method, multiplex
SSOP, enables multifrequency extraction, but its accuracy
is limited due to diffusion over multiplex boundaries. We
also show that this accuracy is somewhat recoverable with
vertical deblurring. In our future work, we hope to investi-
gate overlaying more frequencies in the SSMD approach, as
well as develop better demodulation algorithms to improve
accuracy in multifrequency SSOP.
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