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Abstract—We propose a method that achieves high resolution separation of direct and indirect images of a scene with minimum
frames, which can allow us to recreate the scene and the surrounding landscape in 3D. We simulate the 200 transient images of a
scene captured at different camera angles to approximate the images typically captured by emergent image sensors like the
Single-Photon Avalanche Diode (SPAD) with the renderer software Mitsuba. From this, we introduce a novel heuristic to separate out
the indirect and direct lighting from a transient image. We then synthesize a Neural Radiance Field with the 100 indirect and direct
images. Our method showcases, that despite the complicated image formation model of our captured images, NeRF is able to
reconstruct a 3D scene using them to perform free-viewoint rendering. Our algorithm and flow shows we can generate direct and
indirect images This work can potentially allow new and novel applications in the field of surveillance, environment monitoring and

defence equipment.

Index Terms—Computational Photography, Transient Imaging, Direct and Indirect Imaging

1 INTRODUCTION

WHEN we take a conventional image of a scene, we
are summing up all the photons that hit the sensor
over the exposure time. However, this process discards the
arrival trajectory and the paths taken by each individual
photon, which means useful information is lost. Recently,
emerging sensors utilizing new hardware processes like the
Single-Photon Avalanche Diode (SPAD) cameras allow the
viewing of a trillion frames per second and have allowed
new imaging techniques like transient imaging. Transient
imaging is a set of techniques that captures the propagation
of photons through 3D space and creates a response map
that contains information in 3 dimensions (x, y and time).
The accuracy of this method can even facilitate viewing sin-
gle photon arrivals. In the active imaging regime, transient
imaging could potentially allow the disambiguation be-
tween the direct light (which contains photons which have
bounced off at most 1 surface) and indirect light (which has
bounced off at least 2 surfaces). By differentiating between
these photons, we can separate out images of direct and
indirect light. Separating out direct and indirect light could
open up potential applications like higher resolution time-
of-flight imaging, recreating the 3D environment outside the
camera’s field of view, and seeing behind walls and objects.

However, capturing single-photon image data is compu-
tationally and memory expensive, which makes this unfeasi-
ble for many mass market memory-limited applications like
consumer cameras and surveillance. Recent developments
in 3D Computer Vision have however led to algorithms
for Novel View Synthesis, which would allow us to recover
indirect/direct light images from just a few multi-view ob-
servations that would significantly cut down on the acquisi-
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tion time required. For this project, we propose to extract a
direct light and indirect light neural radiance field of a scene
from only 100 transient images taken from different camera
angles using NeRF, and then through integrating the neural
radiance field get the direct and indirect image of the scene.
This paper seeks to demonstrate the feasibility of extracting
high-resolution direct and indirect images from only a small
number of transient images. Section 2 gives a brief overview
of the work currently done in this area, section 3 goes into
more detail about the proposed method to extract direct and
indirect light, and section 4 talks about the experimental
results.

2 RELATED WORK

Recent work has been done on 3D Scene Reconstruction as
well as direct and indirect light separation. However, no
method has been forumalted to do Novel View Synthesis in
the direct or indirect image domain separately.

2.1

One of the papers that sparked the interest in direct and
indirect separation was published in 2006 [1]. The papers
proposes to use high frequency light sources and multiview
images to get light separation. Since then there has been a
lot of follow up work [2], [3], however none have attempted
to reconstruct novel indirect/direct light views.

Direct and Indirect Light Separation

2.2 Scene Reconstruction

There exists a wide range of methods for RGB and RGB-D
based 3D reconstruction. Most of RGB-D reliant methods are
based on [4], where multiple depth measurements are fused
using a signed distance function (SDF) which is stored in a
uniform 3D grid. An example of such work is KinectFusion
[5] combines such representation with real-time tracking
to reconstruct objects and small scenes in real-time. An
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Fig. 1. The process of our direct and indirect image free viewpoint rendering. We first generate transient images from mitsuba. In the second
step we separate the direct and indirect components using a simple heuristic. Finally we train NeRF to reconstruct the scene from just these two

components separately.

example of a method reliant on just RGB images is Single
View MPI [6], which learns to generate multiplane images
given one or more images with known viewpoints.

Most recently coordinate-based multi layer perceptrons
(MLP) have become a popular representation of the 3D
scene [7]. As input the MLP takes a 3D location in the
model space and outputs for example, occupancy, density
or colour. There has been a lot of work using this simple
idea in multiple applications like SLAM [8], [9], for novel-
view synthesis [7], [10].

The ubiquitously used, MLP based method called NeRF
[7] uses a 5D neural radiance field to represent the scene
i.e. the scene is represented with its volume density and
directional emitted radiance at any point in space. To render
the color of any ray passing through the scene, they propose
to parametrize an MLP with a scene coordinate and viewing
direction d, to output colour ¢(x) and volume density o(x,
d).

The expected color C(r) of camera ray r(t) = o + td
with near and far bounds ¢,, and ¢ is then calcualted using
quadrature as:
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The original NeRF implementation was however very
slow and there have been many methods since then to speed
it up [11], [12]. We will however use an implementation
of Instant-NGP [13], which uses multi-resolution hashed
feature grids to store representation of points which are then
then decoded into the same network outputs as for NeRF.
The implementation we will be using is from the popular
library NeRFAcc [14].

3 PROPOSED METHOD

For the project we will be working in simulation, specifi-
cally, we use the Mitsuba renderer [15] to render transient
images of the scene. We then use a heuristic to separate
direct/indirect photons, which can then be added up to give
the indirect and direct component images. We then use Nerf
[7] to be able to render novel indirect and direct images. To
demonstrate this process, two images were processed using
our flow (car and lego). The flow is visualized in Figure 1.

3.1 Capturing Transient Images

To generate the 200 transient images, we take the Mitsuba
file of the target scene and then generate 200 new camera
locations and angles, in the process generating 200 Mitsuba
files each with its unique camera location. To expedite the
process of generating the 200 camera angles, the Mitsuba
file is first exported to Blender to determine the x,y and
z location of the target object in the scene, as well as its
size. Then a script was written based on NeRF’s synthetic



dataset to generate 200 camera locations that sweep around
an object in 360 degrees. The angle could be changed to
change the sweep range (0 to 360 degrees), as well as the
camera pivot origin, camera x, y and z distance to the
object, and camera start and end orientation. The values
are then manually inputted based on the scene shown in
Blender. This method allows us to quickly generate all the
camera locations while providing greater versatility when it
comes to the camera movement through the scene, which
would make this method feasible for different varieties of
scenes. The camera location in Mitsuba files is represented
as a 15-element vector that contains information on camera
location, orientation and angle.

This is different from the output of the Blender code,
to use the generated camera locations in Mitsuba, we have
written code that performs the transformation between the
spatial representations. After the Mitsuba file is generated
from the original image, Mitsuba was run on each of the 200
xml files to generate 200 transient images.

We use a derivative of Mitsuba, called Non-line-of-sight
Mitsuba [16], since Mitsuba does not directly support tran-
sient rendering. The code was specifically adapted for tran-
sient rendering, however we use a slight reimplmentation
of it to support also confocal transient imaging.

The two scenes we generated the dataset from can be
found in [17]. To be exact we used a dataset of a pontiac car
and a legoloader.

Original Image
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Fig. 2. The direct and indirect separated images from our method, put
together with the original images of the scene.

3.2 Separation of direct and indirect images

From the transient images, the time-intensity graph was
extracted, this is shown by the graph in Stage 2. of Figure 1.
From this, the two predominant peaks were identified and
the values within the two buckets around the peaks were
integrated over to obtain the direct and indirect image.
More specifically we use the square-fall off property of
light to conclude that the direct peak of the light will be
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dominant in the transient. From this we can conclude that
for a given pixel the highest peak in the time dimension
will be representing the direct component of light (since it
has the shortest distance). We can then by a simple heuristic
take 5 timesteps after this peak to represent the direct com-
ponents of light. We assume that the remaining components
of the transient compose the indirect reflections. Summing
over these two components in the time dimension gives us
the two desired images.

The results can be seen in Figure 3.1. This is not the
best way to separate the indirect and direct components
of light. We can see that the direct component looks a bit
darker in some spots, this is likely due to some ””leakage”
of the direct into the indirect images - since the choice of
5 additional timesteps is a bit arbitrary. A more principled
way given the renderer would be to explicitly render only
one bounce and then more bounces, to subtract the two
images.

However we wanted to simulate a SPAD camera and see
how this separation could be done with data obtained using
a confocal SPAD measurement.

3.3 NeRF

For free viewpoint rendering of the indirect and direct
lighting representations of the scene we train the NeRF as
described previously, using the NeRFAcc implementation of
Instant-NGP. Separately we train the network to render the
colour of indirect/direct light components, using only the
direct path integration of NeRF along rays. To train we use
the groundtruth poses we get from Blender.

For the training setup, we separated the dataset of 200
images into two equal sized training and test sets. We
used every second image as a training set. This means
that we also had quite a dense representation of the scene
beforehand.

4 EXPERIMENTAL RESULTS

We obtained very good results for both the lego and car
scenes. This can be better seen in 4, where we show the
PSNR are SSIM metrics for both the scenes.

Firstly we can notice that the car scene has a much better
PSNR than the lego images, this is probably since in the car
scene the object is much smaller than in the lego scenes and
the images are mostly represented by the background, hence
the pixel based metrics for example squared error are quite
- the network does not have to learn much to represent the
image.

However notice that the car image, more specifically the
image of the indirect lighting components 4 are not very
well represented and the image contains some specularities.

What is more interesting however is to notice the differ-
ence between the PSNRs for the direct and indirect images.
The PSNRs for the direct images are consistently higher
as should be expected. This is since even though NeRF
has a view direction component to it, it does poorly with
data with changing colours from one image to another one,
which happens more so in indirect images, since th light
source can be thought of as being different from image to
image. This is somewhat the case with the direct compo-
nent as well (lighting is changing as we have a confocal
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Fig. 3. The geometry extracted from our direct NeRFs. As we can see
the network is able to capture quite a lot of details in the geometry, for
example small ridges on the lego ground or the wheels of the car. We
call the geometry unsupervised, since apart from camera positions there
is no regularization on it, and it emerges from the network.

setup), however the direct images does not take these more
complicated light paths into equation.

Nonetheless it is very surprising to see that NeRF can
represent these indirect images as all, it is not at all obvious.
As mentioned previously we could think of these indirect
images as if the light is coming from the second bounce
position, this means that the exact lighting conditions for ex
very pixel are extremely complicated. NeRF however is able
to deal with this by just having a viewing direction condi-
tioned colour. This might also say something about indirect
reflections itself, we can deduce that indirect reflections are
principled enough for them to be representable.

Finally we also visualize the geometry produced by our
images in Figure 4. The geometry is very much comparable
to the results that can be obtained from normal NeRF, in fact
after some optimization of parameters we should expect the
direct components geometry to be better than NerF, since
the network no longer has to use the geometry to explain
away more complicated lighting effects.

5 DISCUSSION

From the experimental data, NeRF’s simple rendering equa-
tion is able to represent complex lighting effects, such as
indirect reflections. Nonetheless, results are better for the
reconstruction of the scene using the direct component of
light. This is probably due to the image formation process
being closer to the rendering equation. We are able to re-
cover geometry from the images. For future work, it would
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Fig. 4. Test viewpoint renders from out direct and indirect NeRFs. As we
can see despite a few inconsistencies on the indirect images of the car,
the network is able to reconstruct the images quite well.

be interesting to see how the reconstructed geometry com-
pares to the geometry reconstructed with normal images. It
would also be interesting to see these reconstructions for
more complicated surfaces, for example with sub-surface
scattering.

Another possibly interesting avenue for exploration
would be to use a volumetric framework to perform more
sophisticated rendering. We could use the direct and indi-
rect images we get to supervise a model whose rendering
equations contain indirect light paths. More specifically by
rendering a say 2 or 3 light bounce model, we could generate
estimated direct and indirect images from the network,



Scene Component PSNR SSIM

Lego Direct 33.64 0.98

Lego Indirect 28.50 0.95
Car Direct 38.54 0.98
Car Indirect 33.01 0.90

Fig. 5. PSNR are SSIM results of our reconstructed direct and indirect
images on the car and lego scene. The average results are reported
across 100 test views of the scene.

which could then be compared with groundtruth data to
train a volumetric representation of the scene.

This might unlock a plethora of applications, which have
already been showcased with transient data, for example
non-line of sight imaging or scene relighting.

6 CONCLUSION

Our work introduces an alternative to traditional recon-
struction techniques generated from direct and indirect
lights. This provides new opportunities We demonstrated
the effectiveness of utilizing Neural Radiance fields gen-
erated from the direct and indirect images of only a few
camera positions to construct a scene with minimum space
requirements.

Despite our best efforts, we have not been able to show
an exponential result or reason to separate indirect and
direct components of light. Despite the applications of tran-
sient imaging being plentiful, the use of these intermediate
representations (between normal and transient images) i.e.
direct and indirect images, is still not fully clear. We expect
more work and results in the future to showcase the useful-
ness of this intermediate representation.

We expect interest to grow as more camera sensors are
developed that include direct and indirect image sensing,
for example, the T6 camera [18].
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