
Leveraging Symbolic Planning Models in
Hierarchical Reinforcement Learning

León Illanes1,2, Xi Yan1, Rodrigo Toro Icarte1,2, Sheila A. McIlraith1,2

1University of Toronto, 2Vector Institute
Toronto, Ontario, Canada

{lillanes, rntoro, sheila}@cs.toronto.edu, xi.yan@mail.utoronto.ca

Abstract

We investigate the use of explicit action models—as typically used for Automated
Planning—in the context of Reinforcement Learning (RL). These action models
allow agents to reason about macro-actions and high-level symbolic state spaces.
As a consequence, agents with access to an action model and a planner can au-
tomatically synthesize high-level plans that can, in turn, be used as high-level
instructions to significantly improve sample efficiency. Our approach is based
on classical and partial-order planning, in combination with hierarchical RL and
recent advances in reward specification and problem decomposition for RL. Em-
pirical results show that our approach finds high-quality policies for previously
unseen tasks in extremely few training steps, consistently outperforming standard
Hierarchical RL techniques.

1 Introduction

Reinforcement learning (RL) techniques allow for agents to perform tasks in complex domains, where
environment dynamics and reward structures are initially unknown. These techniques are based on
performing random exploration, observing the dynamics and reward returned by the environment,
and synthesizing an optimal policy that maximizes expected cumulative reward. Unfortunately, when
reward is sparsely distributed, as is the case in many applications, RL techniques can suffer from poor
sample efficiency, requiring millions of episodes to learn reasonable policies. Further, these systems
are typically not taskable: specifying new tasks is often difficult and the skills that are learned for one
task are not easily transferred to others. Over the years a number of approaches have been proposed
to address these shortcomings including efforts to learn hierarchical representations [5], to define
options or macro-actions [23] that can be used by the RL system, or to learn skills that are somehow
independent of the state space where they were learned [12].

Our interest in this paper is in leveraging high-level symbolic planning models and automated plan
synthesis techniques, in concert with state-of-the-art RL techniques, with the objective of significantly
improving sample efficiency and creating systems that are human taskable. Our efforts are based on
the observation that some approximated understanding of the environment can be characterized as a
symbolic planning model—a set of properties of the world and a formal description of actions that
cause those properties to change in predictable ways.

Recent research has demonstrated the benefit of providing high-level instructions to an RL system
to improve sample efficiency (e.g., policy sketches [1], LTL advice [25], reward machines [26]).
Nevertheless, these instructions must be manually generated. By using a symbolic model of the
environment rather than a task-specific set of instructions we are able to automatically generate
instructions in the form of a sequential or partial-order plan—the latter compactly characterizing
a multitude of sequential plans. Such a plan is then used to enhance a Hierarchical Reinforcement
Learning (HRL) system by ignoring options that do not represent advancement in the plan.

KR2ML Workshop at NeurIPS 2019, Vancouver, Canada.

We compare our approach to standard forms of HRL. Our results show that the approach is an
effective method for specifying tasks to an RL agent, reaching high-quality policies for previously
unseen tasks in extremely few training steps.

2 Related Work

The general idea of modeling a problem at various levels of abstraction and then taking advantage
of different reasoning capabilities at each level forms the basis of HRL [21, 4, 24, 18, 23, 5]. The
specific use of symbolic planning techniques as a method for reasoning at the high-level while
using Reinforcement Learning techniques at the lower level has been an active research topic for
decades [18, 8, 9, 29, 28, 14]. In this section, we briefly describe some of these works and highlight
some of the key differences with our proposed approach.

The options framework [23] has become a well-known standard approach for exploiting temporal
abstraction in Reinforcement Learning. Our work is based on this framework, and specific details
regarding how we formalize the framework for our purposes will be given in Section 3. A key
contribution of our work is the way in which we use explicit symbolic planning to do online filtering
of the set of available options.

Other existing approaches have used symbolic planning to select options or macro-actions. An
early approach proposed using a symbolic planner coupled into an RL agent [8]. There, the planner
produces an initial high-level plan and is subsequently used to replan when the plan’s preconditions
are violated. A related approach uses a sequential plan to modify the reward via reward shaping [9].
In contrast to these approaches, our system uses planners to produce a single and final plan that is
then used to define a reward function. The structure in the plan can be exploited to produce an easily
decomposable reward function.

Recent work has also proposed methods based on coupling a planner to an RL agent [28, 14]. There,
the focus has been on two-way communication between agent and planner to continuously improve
the high-level model and find better high-level solutions. In our case, we assume an adequate
high-level model is given and we show how to exploit it. Other work has explored techniques for
automatically building such abstractions [13, 11]. Integrating such techniques into our work may
prove to be an interesting direction for future work.

Finally, there has also been work that has focused on learning explicit state-transition systems that
represent high-level models [29]. With these, standard graph search algorithms can be used to
find sequences of macro-actions. Our work considers implicit state-transition systems described as
classical planning domains. This allows us to consider highly combinatorial problems that correspond
to state-transition systems that are far too large to represent explicitly.

3 Preliminaries

In this section we establish relevant notation and review key aspects of reinforcement learning and
automated planning. In addition, we describe a simple running example.

3.1 Reinforcement Learning

For the purposes of this work, we will say that the environment in which an RL agent acts is
formalized as a tuple E = 〈S,A, p〉, where S is its set of states, A is the set of available actions,
and p(st+1 | st, at) is the transition probability distribution. A policy is defined as a probability
distribution π(a | s) that establishes the probability of the agent taking action a given that its current
state is s.

A task T for environment E is defined as an MDP with the states and transitions of E , reward function
r : S × A × S → R, and discount factor γ ∈ (0, 1]. Then, the objective is to find a policy that
maximizes the expected discounted reward from every state s ∈ S.

3.1.1 Reward Machines

A reward machine is a finite-state machine that can be used to specify temporally-extended and
non-Markovian reward functions. The intuitive idea is that transitions in the reward machine take

2

place based on observations made by the agent about the environment, and that the reward depends
on the transitions taken in the machine. The observations are represented by a set of propositional
symbols P , which correspond to facts that the agent may perceive. For a given environment, we
assume there is a labeling function L : S → 2P that establishes what is perceived when reaching a
state. Then, a reward machine for environment E and observation propositions P is given by the
tuple R = 〈U, u0, δu, δr〉. U is its set of states, u0 is its initial state, δu : U × 2P → U is its state
transition function, and δr : U ×U → R is its reward transition function.1 Whenever the agent makes
a transition (s, a, s′) in the environment and observes P ⊆ P , the current state in the reward machine
is updated from u to u′ = δu(u, P). At this point, the agent receives reward δr(u, u′).

3.1.2 Temporal Abstractions for Reinforcement Learning

Standard RL techniques are faced with significant issues when applied on large-scale problems.
In practical terms, RL algorithms need a large amount of training steps in order to converge. A
popular technique for dealing with these issues is to consider temporally-extended macro-actions
that represent useful high-level behaviors. In particular, the options framework proposes the use of
policies that are trained for achieving specific high-level behaviors, coupled with well-defined criteria
for their termination [23]. Given the current state, an agent acting within this framework chooses one
among the high-level options and executes its policy until it terminates.

For a given environment E = 〈S,A, p〉 and labeling function L : S → 2P , we formalize the notion
of an option as o = 〈πo, To〉 where πo is the option’s policy and To ⊆ P defines its termination
condition. The application of o consists of following policy πo until reaching some state s′ ∈ S such
that To ⊆ L(s′). After this, some other option can be selected, or the execution can terminate.

3.2 Symbolic Planning

We specify planning domains in terms of a tuple D = 〈F ,A〉. F is a set of propositional symbols,
called the fluents of D, and A is the set of planning actions in the domain. Planning states are
specified as subsets of F , so that state S ⊆ F represents the situation in which the fluents in S are all
true and those not in S are false. An action a ∈ A is specified in terms of its preconditions and effects,
which are given as logical formulae over the propositional fluents. Actions are only applicable in
states where their preconditions are satisfied, and such application results in a transition to a state
where the action’s effects are true, and everything else remains unchanged.

A planning task is described by an initial state and a goal condition. The goal is given as a formula
over the fluents of the domain. Any state that satisfies the goal condition is said to be a goal state.
A sequence of actions Π = [a0, a1, . . . , an] is known as a sequential plan for a task when it is
possible to sequentially apply the actions starting at the initial state, and doing so reaches a goal
state. Given a plan Π = [a0, a1, . . . , an], we will refer to its prefix with respect to action ai as
prefix(Π, ai) = [a0, a1, . . . , ai−1].

Partial-order plans generalize sequential plans by relaxing the ordering condition over the actions. A
partial-order plan is a tuple Π =

〈
A,≺

〉
, where A is its set of action occurrences and ≺ is a partial

order over A. The set of linearizations of Π, denoted Λ(Π), is the set of all sequences of the action
occurrences inA that respect the partial order ≺. Any linearization Π ∈ Λ(Π) is a sequential plan for
the task. Intuitively, a partial-order plan represents a family of related sequential plans. Note that it is
entirely possible for a plan to require using the same action twice. As such, two action occurrences in
A may be repetitions of the same action, distinguished only for the purposes of defining the particular
partial-order plan.

3.3 Running Example

We consider a version of the OFFICEWORLD domain described by Toro Icarte et al. (2018). The
low-level environment is represented by the grid displayed in Figure 1a. An agent situated in any
cell can try to move in any of the four cardinal directions, succeeding only if the movement does not
go through a wall. The symbols in the grid represent events that can be perceived by the agent: it
picks up coffee or mail when it reaches the locations marked with blue cups or the green envelope,

1Since we limit ourselves to using simple reward machines, this definition is slightly different (but equivalent)
to the one given by Toro Icarte et al. (2018), which is based on the definition of full-fledged reward machines.

3

A B

CD
K

K

B[

[[

[[

[b

(a) The OFFICEWORLD grid environment.
Different symbols represent the events per-
ceived when reaching particular locations.

get-coffee:
preconditions: (none)

effects: have-coffee
observations: coffee-machine

deliver-coffee:
preconditions: have-coffee

effects: delivered-coffee,
not have-coffee

observations: office

(b) Example planning actions in the OFFICEWORLD.

Figure 1: The OFFICEWORLD running example.

respectively, or it can deliver what it picked up by reaching the office, marked by the purple writing
hand, etc. The locations marked [are places the agent must not step on. The four additional named
locations (A, B, C, D) can also be recognized by the agent. An example of a task is that of delivering
both mail and coffee to the office. For this task, any optimal policy will need to choose whether to
get the coffee or mail first depending on the agent’s initial position.

Figure 1b shows two high-level actions and their preconditions and effects. In addition, it shows the
low-level observations that should be perceived when the actions are executed. Note, for example,
that the only observation associated with the deliver-coffee action is office, and that this makes
no reference to the coffee itself. Whether or not the agent is holding coffee is a high-level fact that
cannot be directly observed by looking only at the current low-level state. Instead, it is a state property
that depends on the past trajectory of the robot: the robot is holding coffee only if it has visited the
coffee machine and has not visited the office since.

4 Planning Models in RL

Given a low-level environment E = 〈S,A, p〉 and the set of symbols P that represent possible
observations, a symbolic model for E is specified asM = 〈D, α〉, where D = 〈F ,A〉 is a planning
domain and α : A → 2P is a function that associates planning actions with sets of observations. The
symbols in F do not directly map to the observations and they can—as in the above example with
the robot and the coffee—be used to model state properties that cannot be perceived in the low-level
environment. Some of the other symbols used in the OFFICEWORLD running example are meant to
represent whether the robot is carrying mail, the set of locations it visited in the past, and whether it
has already delivered coffee or mail to office.

Note that one of the key properties of automated planning systems based on symbolic models is that
specifying individual tasks is very simple. We take advantage of this by enabling the description of
such tasks—goals in the symbolic models—to be communicated to an RL agent.

4.1 From Symbolic Actions to Options

Given an environment E and a corresponding symbolic modelM, we can define a set of options
that represents relevant transitions that can occur inM. For every planning action a ∈ A, we build
a termination condition Ta that is satisfied by all the low-level states in which every observation
associated with a is perceived. Formally, this is defined in terms of L−1 : 2P → 2S , the generalized
or multivalued inverse of the labeling function: Ta = L−1(α(a)) ⊆ S. Then, the set of options
can be defined as O(M) = {〈πa, Ta〉 | a ∈ A}, where every πa is a policy trained specifically for
reaching the states in Ta. Note that two or more actions in A may produce the same target set and be
represented by a single option. In the OFFICEWORLD example, the high-level actions for delivering
mail, delivering coffee, and visiting the office all map to a single observation (office) and therefore
to a single option whose policy is meant to move the robot to the office.

4

4.2 From Plans to Reward Machines

We propose that a good way of communicating the high-level tasks to the agent is not in terms of the
goals of the task, but rather in terms of high-level plans that achieve them. This allows us to specify
tasks that are non-Markovian from the perspective of the low-level environment, such as delivering
coffee in the OFFICEWORLD, while simultaneously enabling a natural form of task decomposition.
To give a specific high-level plan to an RL agent, we will design a simple reward machine that directly
represents the execution of the plan. Reward of 1 will be given only upon completing this execution.

For a sequential plan Π = [a0, a1, . . . , an], the implementation of the corresponding reward machine
is very straightforward and shown in Figure 2a. If instead of a sequential plan we consider a partial-
order plan Π =

〈
A,≺

〉
, we need a reward machine that effectively represents all possible orderings

of the plan, in a way that any execution of one of them results in receiving a reward of 1 only on the
last step. We build this machine by including one state for every possible subset of A. This ensures
that the machine’s executions correctly keep track of which actions have already taken place. Note
that some of these states will not be reachable. In practice, when constructing the reward machine we
only generate the states that are needed (i.e., those that are reachable). The possible transitions will
be defined by explicitly considering Λ(Π), as described in Figure 2b.

• U = {u0, u1, . . . , un+1}
• δr(ui, uj) ={

1 if i = n and j = n+ 1

0 in any other case

• δu(ui, P) ={
ui+1 if P = α(ai)

ui in any other case

(a) Reward machine based on a sequential plan
Π = [a0, a1, . . . , an].

• U = 2A, u0 = ∅

• δr(ui, uj) =

{
1 if uj = A
0 in any other case

• δu(u, P) =
u ∪ {a} if ∃a ∈ A,Π ∈ Λ(Π),

s.t. u = prefix(Π, a)

and P = α(a)

u in any other case

(b) Reward machine based on a partial-order plan
Π =

〈
A,≺

〉
.

Figure 2: Reward machines defined by plans.

Note that the given definition of δu does not necessarily imply a function. Consider two actions
a, b ∈ A such that P = α(a) = α(b), that is, actions that result in the same observations. In
the OFFICEWORLD, an action to simply visit the office achieves the same event as the action to
deliver coffee. Now, if there are two linearizations of Π, Πa and Πb, such that u = prefix(Πa, a) =
prefix(Πb, b), then either action could be used in the definition of δu(u, P). In such cases, we
arbitrarily choose which of the actions to use, as either choice represents a valid linearization of Π.

4.3 From Reward Machines to Meta-Controllers

Given an environment E = 〈S,A, p〉 and a symbolic model M = 〈D, α〉, we want to leverage
the set of options O(M) to efficiently find a low-level policy for achieving some high-level goal
g. Following the process outlined in Section 4.2, we can obtain reward machines that represent
plans—sequential or partial order—to achieve g. Subsequently, we can use any algorithm that can
successfully exploit the structure given by the reward machine. Ostensibly, the natural approach
would be to use QRM, the algorithm specifically designed by Toro Icarte et al. (2018) in order
to exploit this structure. QRM works by learning distinct policies for each state in the machine.
However, these policies are goal specific, and cannot be easily transferred to new tasks. To address
this issue, we consider a simpler alternative that was introduced by Toro Icarte et al. as an evaluation
baseline. The approach follows the standard HRL setting, which consists of using some RL algorithm
to learn a meta-controller that selects options. The only addition is that the meta-controller is—at
every step—restricted to select only among options that are reasonable given the structure and current
state of the reward machine.

5

To formalize this notion, we consider a reward machineR = 〈U, u0, δu, δr〉 that represents the task
at hand. We will define a function Ω: U → 2O(M) and will use it to restrict the options available
to the agent. Specifically, the agent will only be able to use an option o ∈ O(M) if the current
reward machine state u is such that o ∈ Ω(u). The intention is to limit the agent to select only among
high-level actions that can progress the reward machine towards a different state. Then, the definition
of Ω follows from inspection of the reward machine’s structure:

Ω(u) = {o ∈ O(M) | δu(u, Po) 6= u}

5 Empirical Evaluation

We evaluated our approach by considering three different low-level environments and respective high-
level symbolic models. In each case, we defined options using the approach outlined in Section 4.1.
To best evaluate the effectiveness at leveraging previous experience, we trained the options on small
tasks and then measured the performance of our algorithms on new tasks for each environment.
For each task we computed sequential and partial-order plans, and built the corresponding reward
machines. By restricting the meta-controller to strictly follow the sequential plan we obtain a first
approach, which we have called naive in the following discussion. If we use a partial-order plan
instead, we can restrict the meta-controller to only choose high-level actions that would advance the
state in the corresponding reward machine. This is our main approach, and is called HRLr.

We compare the results obtained by our algorithms to those obtained by simple baselines that use
the same reward functions and pretrained options, but in a standard HRL framework (i.e., without
restricting the options). These are HRL(seq) and HRL(pop), and respectively use the reward machines
constructed out of sequential and partial-order plans, but only as black-box reward functions.

In tabular cases, all training was done through the Q-learning algorithm [27]. For the continuous
domain, we used DQN [16].

Benchmark Environments The first test environment is the OFFICEWORLD running example.
Here the high-level actions include visiting any of the named locations, getting coffee, getting mail,
delivering either coffee or mail to the office, and delivering both coffee and mail to the office. This
results in options for going to any of the named locations or to the office, and for getting coffee and
getting mail. The actions for delivering to the office are all mapped to the same observation—the
agent reaching the office—and therefore correspond to the same option. For this environment, we
tested on tasks consisting of 7 different goals and 10 random initial states for each goal. Each
individual experiment was run 10 times.

Our second environment is the Minecraft-inspired gridworld described by Andreas et al. [1]. The
grid contains raw materials (e.g., wood, iron) and locations where the agent can combine materials to
produce refined materials (e.g., wooden planks), tools (e.g., hammer), and goods (e.g., goldware). The
high-level actions allow for collecting each of the raw materials, and for achieving the combinations.
The types of tasks that we evaluated on include examples such as “build a bridge” or “have a
hammer and a pickaxe”. We ran experiments on 10 different maps, 10 different final-state goals, and
3 random initial states for each combination of map and goal. Each such experiment was run 3 times.

Our third environment, FARMWORLD, situates the agent in a continuous 2D map populated by a
group of moving animals. The agent can control its own acceleration, and must collect resources
from the animals. As in the previous domain, the high-level actions and tasks involve collecting
specific resources (in this case by reaching certain animals) and combining them. Some processes
involve consuming the animals, whereas others do not (e.g., a cow can be used to produce beef once,
or to produce milk multiple times). We tested on 2 maps, 10 different goals, and 2 independent trials
for each combination.

Pretraining Options In all environments, we pretrained the options by generating a small set of
random initial states. We simultaneously trained a single policy for each option. The experience
observed when training for any given option was used for training all other options, in an off-policy
learning setting. This pretraining was restricted to a small number of reinforcement learning steps. In
each independent experiment, option policies were continuously refined as the agent continued to
interact with the environment.

6

Computing Plans For the computation of sequential plans we represented the problems in the Plan-
ning Domain Definition Language (PDDL) [15] and used the FastDownward planning system [10]2,
in its LAMA configuration [19]. This allowed us to quickly produce high-quality sequential plans.
In order to get partial-order plans, we relaxed the ordering in the sequential plans found by Fast
Downward. Specifically, we used a mixed integer linear programming formulation proposed by Do
and Kambhampati (2003) in the context of metric temporal planning, and subsequently adapted for
classical planning problems by Muise et al. (2016)3.

5.1 Results and Discussion

We report the results for the OFFICEWORLD and FARMWORLD environments in Figure 3. Each
graph displays the performance obtained after training with the labeled algorithm for the specified
number of steps. We evaluated the results every 500 training episodes. In both cases, we report the
normalized median discounted reward obtained on all experiments (using discount γ = 0.9) . We
also show the median quintile performance (shaded area). Rewards were normalized by the best
value obtained for each task across all independent experiments.

0 10K 20K 30K 40K 50K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRLr

HRL(seq)
HRL(pop)

(a) OFFICEWORLD

0 100K 200K 300K 400K 500K
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRLr

HRL(seq)
HRL(pop)

(b) MINECRAFTWORLD

Figure 3: Experimental performance obtained on previously unseen tasks in two discrete domains.
Median (and median quintile, as the shaded area) discounted reward normalized by best result
obtained for each task across all experiments, using four different algorithms. The approaches that
restrict option application to options that advance the plan (naive and HRLr) converge to high-quality
policies in significantly less training steps that standard HRL methods (HRL(seq) and HRL(pop)).

The experimental results were positive and show that the approaches that restrict which options can
be used based on the actions presented by the plan produced good policies after very few training
episodes. In these discrete domains, the naive approach of directly following the high-level plan
quickly reached a plateau in its performance; but even when compared to this, standard HRL methods
needed up to an order of magnitude more training episodes to reach comparable results. The use of
a partial-order plan resulted in significant improvements in the quality of the solutions found. For
example, after only 10, 000 training episodes in the OFFICEWORLD domain, HRLrfound solutions that
were approximately 3 steps removed from the best solutions found (normalized discounted reward of
γ3 ≈ 0.73). With the same amount of training, the solutions found by naive were approximately 6
steps away from the purported optimum (γ6 ≈ 0.53). Without restricting the options, the solutions
found after 10, 000 training episodes were over 12 steps longer than optimal (γ12 ≈ 0.28). To achieve
a performance similar to HRLr, HRL(pop) needed over 30, 000 training episodes.

The effects of restricting the options and using partial-order plans were even more pronounced in
the MINECRAFTWORLD domain, where the environment and the tasks were much harder to learn.
Indeed, after 100, 000 training episodes, HRLrfound solutions that were 3 steps away from optimal,
on average, whereas naive found solutions that were 12 steps away. With this amount of training,
all the policies learned with the unrestricted methods (HRL(seq) and HRL(pop)) produced solutions
that were at least 35 steps longer than the best solutions found by other methods. In most cases,

2Available online at http://www.fast-downward.org/
3With implementation available at https://bitbucket.org/haz/pop-gen/

7

http://www.fast-downward.org/
https://bitbucket.org/haz/pop-gen/

they produced policies that could not actually reach the goal at all. To find solutions similar to
those obtained with HRLrand 100, 000 training episodes, HRL(pop) needed almost 500, 000 training
episodes.

The difference in performance was exacerbated even further in the experiments on the continuous case.
Here, the tasks are extremely hard and the baseline methods usually only found severely suboptimal
solutions for them. We display these results in Figure 4.

0 200K 400K 600K 800K 1000K
 0

 0.1

 0.2

 0.3

 0.4

 0.5

N
or

m
al

iz
ed

 d
isc

ou
nt

ed
 re

w
ar

d

Number of training steps

naive
HRLr

HRL(seq)
HRL(pop)

(a) Median (and median quintile, shaded) discounted
reward normalized by best result obtained for each
task across all experiments.

0 100 200 300 400 500 n/a
0

100

200

300

400

500

n/a

H
R
L
r

HRL(pop)

(b) Comparison of the lengths of the solutions gen-
erated by HRLr and HRL(pop) throughout all exper-
iments. HRLr found shorter solutions in 86.7% of
experiments.

Figure 4: Experimental performance obtained on previously unseen tasks in the FARMWORLD.

Figure 4a shows the discounted rewards obtained by all approaches in this domain. Here, we evaluated
the results every 1, 000 training episodes. Note that even after 1, 000, 000 training episodes, the
best approach only found solutions that were over 30 steps longer than optimal on average. The
approaches that do not restrict the available options typically found solutions that were hundreds of
steps longer than optimal or that could not reach the goal. In Figure 4b, we compare the number of
steps taken by the agent before reaching the goal across all experiments ran using HRLr and HRL(pop).
Here, every point represents a different experiment. Points below the diagonal are those in which
HRLr reached the goal in less steps than HRL(pop). Points along the rightmost and topmost borders
respectively represent experiments in which HRLr reached the goal and HRL(pop) did not, and vice
versa. In the 8, 000 experiments ran in the FARMWORLD domain, HRLr found a shorter solution than
HRL(pop) in 6, 936 cases, which corresponds to 86.7% of the cases.

6 Conclusions and Future Work

To conclude, we believe that the automatic generation of goal-relevant options and ordering constraints
over them—in conjunction with the ability to explicitly represent them in a structured reward
function—is one of the key aspects that will enable RL systems to be both taskable and scalable.
Moreover, we believe that symbolic planning and knowledge representation techniques can provide
the ideal framework for generating such options and constraints. Planning formalisms and algorithms
support a plethora of different domain and solution properties, such as temporally-extended goals [2],
preferences [3], diverse plans [20, 22], temporal and numeric constraints [7], and many more. All
of these could be used for representing rich reinforcement learning tasks, while preserving useful
structure that can be exploited when learning policies.

8

References

[1] Jacob Andreas, Dan Klein, and Sergey Levine. “Modular Multitask Reinforcement Learning with Policy
Sketches”. In: Proceedings of the 34th International Conference on Machine Learning (ICML). Vol. 70.
PMLR. 2017, pp. 166–175.

[2] Fahiem Bacchus and Froduald Kabanza. “Planning for Temporally Extended Goals”. In: Proceedings of
the 13th National Conference on Artificial Intelligence (AAAI). 1996, pp. 1215–1222.

[3] Jorge A. Baier and Sheila A. McIlraith. “Planning with Preferences”. In: AI Magazine 29.4 (2008),
pp. 25–36.

[4] Peter Dayan and Geoffrey E. Hinton. “Feudal Reinforcement Learning”. In: Advances in Neural Informa-
tion Processing Systems 5 (NIPS). 1992, pp. 271–278.

[5] Thomas G. Dietterich. “Hierarchical Reinforcement Learning with the MAXQ Value Function Decompo-
sition”. In: Journal of Artificial Intelligence Research 13 (2000), pp. 227–303.

[6] Minh B. Do and Subbarao Kambhampati. “Improving Temporal Flexibility of Position Constrained
Metric Temporal Plans”. In: Proceedings of the 13th International Conference on Automated Planning
and Scheduling (ICAPS). 2003, pp. 42–51.

[7] Maria Fox and Derek Long. “PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains”. In: Journal of Artificial Intelligence Research 20 (2003), pp. 61–124.

[8] Matthew Jon Grounds and Daniel Kudenko. “Combining Reinforcement Learning with Symbolic
Planning”. In: Adaptive Agents and Multi-Agents Systems III (AAMAS III). Vol. 4865. LNCS. 2008,
pp. 75–86.

[9] Marek Grześ and Daniel Kudenko. “Plan-based reward shaping for reinforcement learning”. In: Pro-
ceedings of the 4th IEEE International Conference on Intelligent Systems (IS). Vol. 2. 2008, 10-22–
10-29.

[10] Malte Helmert. “The Fast Downward planning system”. In: Journal of Artificial Intelligence Research
26 (2006), pp. 191–246.

[11] Steven James, Benjamin Rosman, and George Konidaris. “Learning to Plan with Portable Symbols”. In:
Workshop on Planning and Learning (PAL@ICML/IJCAI/AAMAS). 2018.

[12] George Konidaris and Andrew G. Barto. “Building Portable Options: Skill Transfer in Reinforcement
Learning”. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI).
2007, pp. 895–900.

[13] George Konidaris, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “From Skills to Symbols: Learning
Symbolic Representations for Abstract High-Level Planning”. In: Journal of Artificial Intelligence
Research 61 (2018), pp. 215–289.

[14] Daoming Lyu et al. “SDRL: Interpretable and Data-efficient Deep Reinforcement Learning Leveraging
Symbolic Planning”. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI).
2019.

[15] Drew McDermott. PDDL—The Planning Domain Definition Language. Tech. rep. Yale Center for
Computational Vision and Control, 1998.

[16] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540
(2015), pp. 529–533.

[17] Christian J. Muise, J. Christopher Beck, and Sheila A. McIlraith. “Optimal Partial-Order Plan Relaxation
via MaxSAT”. In: Journal of Artificial Intelligence Research 57 (2016), pp. 113–149.

[18] Ronald Parr and Stuart J. Russell. “Reinforcement Learning with Hierarchies of Machines”. In: Advances
in Neural Information Processing Systems 10 (NIPS). 1997, pp. 1043–1049.

[19] Silvia Richter and Matthias Westphal. “The LAMA planner: Guiding cost-based anytime planning with
landmarks”. In: Journal of Artificial Intelligence Research 39 (2010), pp. 127–177.

[20] Mark Roberts, Adele E. Howe, and Indrajit Ray. “Evaluating Diversity in Classical Planning”. In:
Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS).
2014, pp. 253–261.

[21] Satinder P. Singh. “Reinforcement Learning with a Hierarchy of Abstract Models”. In: Proceedings of
the 10th National Conference on Artificial Intelligence (AAAI). 1992, pp. 202–207.

[22] Shirin Sohrabi et al. “Finding Diverse High-Quality Plans for Hypothesis Generation”. In: Proceedings
of the 22nd European Conference on Artificial Intelligence (ECAI). 2016, pp. 1581–1582.

[23] Richard S. Sutton, Doina Precup, and Satinder P. Singh. “Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning”. In: Artificial Intelligence 112.1-2 (1999), pp. 181–
211.

[24] Sebastian Thrun and Anton Schwartz. “Finding Structure in Reinforcement Learning”. In: Advances in
Neural Information Processing Systems 7 (NIPS). 1994, pp. 385–392.

9

[25] Rodrigo Toro Icarte et al. “Advice-Based Exploration in Model-Based Reinforcement Learning”. In:
Canadian Conference on Artificial Intelligence. 2018, pp. 72–83.

[26] Rodrigo Toro Icarte et al. “Using Reward Machines for High-Level Task Specification and Decomposition
in Reinforcement Learning”. In: Proceedings of the 35th International Conference on Machine Learning
(ICML). Vol. 80. PMLR. 2018, pp. 2112–2121.

[27] Christopher J. C. H. Watkins. “Learning from delayed rewards”. PhD thesis. King’s College, University
of Cambridge, 1989.

[28] Fangkai Yang et al. “PEORL: Integrating Symbolic Planning and Hierarchical Reinforcement Learning
for Robust Decision-Making”. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI). 2018, pp. 4860–4866. DOI: 10.24963/ijcai.2018/675. URL: https://doi.
org/10.24963/ijcai.2018/675.

[29] Amy Zhang et al. “Composable Planning with Attributes”. In: Proceedings of the 35th International
Conference on Machine Learning (ICML). Vol. 80. PMLR. 2018, pp. 5837–5846.

10

https://doi.org/10.24963/ijcai.2018/675
https://doi.org/10.24963/ijcai.2018/675
https://doi.org/10.24963/ijcai.2018/675

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Reward Machines
	Temporal Abstractions for Reinforcement Learning

	Symbolic Planning
	Running Example

	Planning Models in RL
	From Symbolic Actions to Options
	From Plans to Reward Machines
	From Reward Machines to Meta-Controllers

	Empirical Evaluation
	Results and Discussion

	Conclusions and Future Work

