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Abstract
The real-world application of planning techniques
often requires models with numeric fluents. How-
ever, these fluents are not directly supported by
most planners and heuristics. We describe a family
of planning algorithms that takes a numeric plan-
ning problem and produces an abstracted represen-
tation that can be solved using any classical plan-
ner. The resulting abstract plan is generalized into
a policy and then used to guide the search in the
original numeric domain. We prove that our ap-
proach is sound, and evaluate it on a set of standard
benchmarks. Experiments demonstrate competitive
performance when compared to other well-known
algorithms for numeric planning, and a significant
performance improvement in certain domains.

1 Introduction
Automated planning techniques are designed to be used for
solving problems that can be modeled as the task of finding a
course of actions that will transform a given initial state into a
goal state. In classical planning the space of possible states is
defined by a finite set of propositional fluents. Although this
formalism can be used to express many interesting real-world
problems, it assumes a finite number of possible states. This
can be a limiting factor when modeling problems in which
the current state involves resources (e.g., the amount of re-
maining fuel in an autonomous vehicle) or physical properties
(e.g., the current velocity of a vehicle), which has motivated
the development of planning systems that allow numeric flu-
ents as part of the domain description.

These numeric planning problems can be solved with tech-
niques similar to those used for classical planning. Indeed,
much of the research relating to numeric planning has focused
on extending existing systems and well-known heuristics for
classical planning to work with numeric fluents. A notable
example is the Metric-FF planner [Hoffmann, 2003], which
extends the FF delete relaxation heuristic [Hoffmann and
Nebel, 2001]. The LPRPG planner [Coles et al., 2008] further
extends this using linear programming to reason about the nu-
meric fluents linked in consumer-producer relations. A dif-
ferent type of relaxation, based on the subgoaling ideas used
for the hmax and hadd heuristics [Haslum and Geffner, 2000;

Bonet and Geffner, 2001], was recently described by Scala
et al. (2016). Other work has proposed techniques based on
problem reformulation and abstraction [Chrpa et al., 2015;
Illanes and McIlraith, 2016a; 2016b].

The work presented in this paper completes and extends the
approach used by the ASTER algorithm, described in pre-
vious work [Illanes and McIlraith, 2016a; 2016b]. ASTER
constructs an abstraction based on the numeric conditions
present in the problem at hand. The abstraction results in a
classical planning problem, and execution of a partial policy
obtained for the abstract problem is attempted on the concrete
numeric problem and repaired as needed. However, ASTER
has several limitations. First, the abstraction process it uses is
based on numeric intervals, and is only applicable on a re-
stricted class of problems. Similarly, the repair procedure
used in ASTER is very simplistic and prone to falling into
dead-ends. The main contributions of this paper are a more
general abstraction method that is capable of dealing with ar-
bitrary numeric expressions, and a novel search algorithm,
ARGUS, that makes use of the obtained abstract policy to
guide search in a way that is not hampered by the presence
of dead-ends. In addition, we present theoretical and empiri-
cal results that show our approach is correct and effective in
practice.

2 Background
In this section, we define and describe the notation and for-
malisms used throughout the paper. This includes classical
and numeric planning, the use of abstraction in the context of
planning, and a basic heuristic search algorithm for planning.

2.1 Classical Planning
We consider classical planning problems formalized
through a finite-domain representation similar to that of
SAS` tasks [Bäckström and Nebel, 1995]. A particular prob-
lem is defined by a tuple Π “ xV, s0, s‹,Oy where:
• V is a finite set of state variables. Each variable v P V

has a fixed finite domainDv . A partial assignment to the
variables in V or partial classical state is a function s
over V such that spvq P DvYtKu for every v P Vs. Here,
spvq “ K signifies that v is undefined in s. Otherwise,
v is defined in s. If all variables in V are defined in s, so
that spvq ‰ K for every v P V , s is known as a classical
state over V .
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• The initial classical state s0 is a classical state over V .
• The goal s‹ is a partial classical state over V .
• O is a finite set of operators over V . An operator o P O

is defined by a tuple xlo, preo, effoy. Respectively, preo
and effo correspond to the preconditions and effects of
o and are both partial classical states. lo is the label or
name of o.

To formalize the semantics of a planning problem, we use
the notion of partial state entailment.
Definition 1 (Entailment). Given two partial classical states,
s and s1, we say s entails s1 if for every v P V that is defined
in s1, s1pvq “ spvq. This is denoted by s |ù s1.

An operator o P O is applicable over s if and only if s |ù
preo. The successor resulting from applying an applicable
operator o over partial classical state s is the partial classical
state defined by δΠps, oq:
• δΠps, oqpvq “ effopvq, if v is defined in effo.
• δΠps, oqpvq “ spvq, if v is undefined in effo.
The notions of applicability and operator application can

be extended to consider a sequence of operators in an obvious
manner. Given a classical planning problem Π, the objective
is to find a sequence of operators o‹ “ ro0, o1, . . . , ons appli-
cable over s0, such that δΠps0,o

‹q |ù s‹. Such a sequence is
called a plan.

2.2 Numeric Planning
A numeric planning problem can be defined by extending
the definition of a classical planning problem into a tuple Π “
xV,N , s0, n0, s‹, n‹,Oy.
• V , s0 and s‹ are the same as in the classical formalism.
• N is a finite set of numeric variables. Each numeric

variable w P N has domain R. A partial assignment to
the numeric variables in N or numeric state is a func-
tion n : N ÞÑ RK “ R Y tKu. As before, npwq “ K
signifies w is undefined in n. A pair S “ xs, ny con-
sisting of a classical state and a numeric state is called a
state.

• n0 is the initial numeric state, a numeric state over N .
• n‹ is the numeric goal.
• O is, again, a set of operators. Each o P O is defined by

a tuple xlo, preo, effo, preNo , effNo y. Here, lo is, again, the
label of the operator. preo and effo correspond to the
classical preconditions and classical effects, respec-
tively. As in the classical case, these are partial classical
states. preNo and effNo are the numeric preconditions
and numeric effects of o.

To formally define the numeric goal, numeric precondi-
tions and numeric effects, we need to define some auxiliary
concepts. The numeric goal and numeric preconditions are
both defined as sets of numeric conditions. Numeric effects
are sets of numeric assignments.
Definition 2 (Numeric Condition). A numeric condition c is
defined by a comparator C P tă,ď,“,ě,ąu and two arith-
metic expressions over N and R, lhs and rhs. Given a nu-
meric state n, c can be evaluated over n by substituting in lhs

and rhs every instance of every numeric variable w P N by
the value npwq. c evaluates to true if and only if every w
appearing in lhs or rhs is defined in n and the comparison
lhs C rhs holds. Otherwise, c evaluates to false. Abusing
notation, we will refer to the evaluation of c over n as npcq.

Definition 3 (Numeric Entailment). Given a numeric state,
n, and a set of numeric conditions, n1, we say n entails n1 if
for every c P n1, npcq “ true. We overload the notation for
the classical entailment, and denote this as n |ù n1.

Definition 4 (Numeric Assignment). A numeric assignment
a is defined by a numeric variable wa P N and an arithmetic
expression exp over N and R. a can be applied over a nu-
meric state n by substituting in exp every instance of every
numeric variable w P N by the value of npwq. The resulting
arithmetic expression over R Y tKu can be evaluated into a
single value r P R Y tKu. The result of the application is a
numeric state na such that napwaq “ r and napwq “ K for
every w ‰ wa.

Now, an operator o “ xlo, preo, effo, preNo , effNo y is appli-
cable over state S “ xs, ny if and only if s |ù preo and
n |ù preNo . The result of applying an applicable operator
o over S is δΠpS, oq “ xδΠps, oq, δΠpn, oqy. Here δΠps, oq
corresponds to the result of applying the classical part of o
over s. δΠpn, oq is given by:

• δΠpn, oqpwq “ napwq, if there is some numeric assign-
ment a P effNo such that wa “ w1.

• δΠpn, oqpwq “ npwq, otherwise.

Extending the notions of applicability and operator appli-
cation to deal with sequences of operators can be done in
the same way as for the classical case. A plan for a nu-
meric planning problem Π is a sequence of operators o‹ that
is applicable in xs0, n0y, such that δΠps0,o

‹q |ù s‹ and
δΠpn0,o

‹q |ù n‹.

2.3 Planning as Search
A successful and well-known approach to automated plan-
ning is to use state-space search. Algorithm 1 outlines a
very basic template for a numeric planning algorithm, where
the state space is traversed in different ways depending on the
strategy employed to remove states from OPEN. A common
approach uses heuristic estimates of the distance to go com-
bined with action costs or path lengths in order to determine
which state to expand next.

2.4 Abstraction
Abstraction techniques have often been used to aid the search
process in automated planning. Early work focused on con-
structing abstraction hierarchies that decompose a large plan-
ning problem into several smaller ones. Examples of this ap-
proach include ABSTRIPS [Sacerdoti, 1974] and ALPINE
[Knoblock, 1994]. Recent focus has been on state ag-
gregation to produce sufficiently small abstract spaces that
can be represented explicitly. Distances in these abstract

1Note that this results in an ambiguity if there are two or more
numeric assignments in effNo that affect the same numeric variable.
As such, the formalism requires that this does not happen.
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Algorithm 1: Best-first search for numeric planning
1 Algorithm Search(Π)

Input: Π “ xV,N , s0, n0, s‹, n‹,Oy, a numeric planning
problem

Output: A plan π for Π (or false if no plan exists)
2 OPEN Ð txs0, n0yu

3 CLOSED Ð ∅
4 PARENTrxs0, n0ys Ð NULL
5 while OPEN ‰ ∅ do
6 Remove some state S from OPEN.
7 GÐ Expand(S)
8 if G ‰ NULL then
9 return Extract(G)

10 return false

11 Procedure Expand(S “ xs, ny)
12 if s |ù s‹ and n |ù n‹ then

/* S is a goal state */
13 return S
14 CLOSED Ð CLOSED Y tSu
15 for o P O such that o is applicable in S do
16 S1 Ð δΠpS, oq
17 if S1 R OPEN and S1 R CLOSED then
18 PARENTrS1s Ð xS, oy
19 OPEN Ð OPEN Y tS1u

20 return NULL

21 Procedure Extract (S)
22 π Ð rs

23 while S ‰ NULL do
24 xS1, oy Ð PARENTrSs
25 Append o at the beginning of π.
26 S Ð S1

27 return π

spaces can be used as admissible heuristics for the con-
crete space. Many leading approaches to optimal planning
use such abstractions [Edelkamp, 2001; Sievers et al., 2012;
Seipp and Helmert, 2013; 2014; Helmert et al., 2014].

In addition, abstraction has been a key aspect of
model-checking and software verification techniques for
many decades. The formalization of Abstract Interpreta-
tion [Cousot and Cousot, 1977] has been an important tool
for static analysis of software. A special form of Abstract
Interpretation, Predicate Abstraction [Graf and Saı̈di, 1997],
has been widely used in model-checking and has many simi-
larities with the abstraction approach we use in our work.

Indeed, we are interested in state-aggregation abstractions.
Unlike most planning applications of abstraction we do not
use the abstractions to build heuristics and we do not need
to represent the resulting state spaces explicitly. The type of
abstractions that we consider will take a planning problem
and produce another planning problem.

A state-aggregation abstraction is defined as a function
α : S ÞÑ Sα that maps states from one state space to another.
The domain of α corresponds to the concrete state space and
its range is the abstract state space. Given an abstraction α,

we define its concretization function γ : Sα ÞÑ 2S as:

γpSαq “ tS | αpSq “ Sαu

For a numeric planning problem Π “

xV,N , s0, n0, s‹, n‹,Oy as defined above, we are inter-
ested in abstractions for the state space defined by its
classical and numeric variables: S “

Ś

vPV Dv ˆ R|N |K .
Furthermore, given an abstraction function for this space, it
induces an abstract transition function δα : SαˆO ÞÑ 2S

α

defined as follows:

δαpS
α, oq “ tαpSq | DSγPγpSαqδΠpS

γ , oq “ Su

The semantic intention behind this is that given an exist-
ing transition in the concrete state space, there must exist a
corresponding transition in the abstract state space.

2.5 Plan Regression and Partial Policies
A possible generalization of planning problems involves find-
ing more than a sequential plan. A policy for a problem Π is
a function that maps states to operators. A partial policy is
a policy that is defined only over a subset of the states in the
problem.

In classical planning, operator regression [Waldinger,
1977] of an operator o over a partial state s is a process that
allows to determine the necessary and sufficient conditions
that must hold in a partial state s1 such that δps1, oq “ s.
Repeatedly applying regression from the goal of a planning
problem, working backwards through a plan, identifies the
relevant properties of intermediate states that allow the plan
to work [Fritz and McIlraith, 2007], effectively generalizing
the plan into a partial policy [Muise et al., 2012].

Given a partial policy P and a classical state s, we will
denote the operator indicated by the policy for the state as
Ppsq. If P is not defined for s, we will say Ppsq “ NULL.

Note that given a planning problem and an abstraction α
as defined above, a partial policy Pα for the resulting ab-
stract problem can be easily adapted into a policy for the con-
crete problem. We extend the notion of concretization onto
partial policies so that given a partial policy Pα for the ab-
stract problem we define the corresponding partial policy for
the concrete problem P “ γpPαq according to the formula
Ppsq “ Pαpαpsqq.

3 The ARGUS Algorithm
In this section we give a high-level overview of our numeric
planner. ARGUS (Abstraction and Regression to Guide
Search) takes advantage of a given abstraction procedure that
takes a numeric planning problem and produces an abstracted
version in the form of a classical planning problem. It then
uses a classical planner to find a solution for this abstract
problem. Our abstraction procedure is described in Section 4.

The algorithm works in four stages, as outlined in Algo-
rithm 2. First, it generates an abstracted version of the prob-
lem at hand by using the given Abstract procedure. It then
solves the abstract problem through the use of the classical
planner. It subsequently generalizes the obtained plan into a
partial policy by regressing from the goal over the obtained
plan. Note that regression of the abstract plan πα actually
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Algorithm 2: Overview of the ARGUS algorithm
1 Algorithm ARGUSpΠq

Input: Π “ xV,N , s0, n0, s‹, n‹,Oy, a numeric planning
problem

Output: A plan π for Π
2 Πα

Ð Abstract(Π)
3 πα Ð Plan(Πα)
4 P Ð γpRegress(πα))
5 return PolicyGuidedSearch(Π,P)

produces an abstract policy that is subsequently concretized
into the concrete policy P . Finally, it uses a policy-guided
search algorithm to search in the numeric planning problem
space until reaching a goal state.

The POLICYGUIDEDSEARCH algorithm is based on the
basic SEARCH algorithm described in Algorithm 1, but takes
advantage of the existing policy through a modification of the
expansion procedure. Effectively, the only change made to
Algorithm 1 is to substitute the call to EXPAND for a call
to POLICYGUIDEDEXPAND. The modified expansion proce-
dure is shown in Algorithm 3.

Algorithm 3: Policy Guided Expansion Procedure
1 Procedure PolicyGuidedExpand(S “ xs, ny,P)
2 if s |ù s‹ and npcq “ true for every c P n‹ then

/* S is a goal state */
3 return S
4 CLOSED Ð CLOSED Y tSu
5 for o P O such that o is applicable in S do
6 S1 Ð δΠpS, oq
7 if S1 R OPEN and S1 R CLOSED then
8 PARENTrS1s Ð xS, oy
9 if PpSq “ o then

10 G “ PolicyGuidedExpand(S1,P)
11 if G ‰ NULL then
12 return G

13 else
14 OPEN Ð OPEN Y tS1u

15 return NULL

Intuitively, the idea behind policy guided search is to accel-
erate the search process by greedily following advice given by
the policy. Whenever a state is expanded we verify if the pol-
icy dictates an applicable action should be used in it. If this
is true, we proceed to recursively expand the resulting state.
Effectively, this means that the search algorithm quickly ex-
plores parts of the search space that are covered by the policy.

It is easy to see that the policy guided expansion procedure
used in policy guided search does not allow traversal of any
impossible transition. Therefore, any expanded state –be it
a direct expansion or a recursive one– is reachable from its
Parent, through the corresponding action. This justifies the
following observation.

Observation 1. Given a valid state-aggregation abstraction,
ARGUS is sound. Whenever a goal state is about to be ex-

panded, a sound plan is extracted and returned by the algo-
rithm.

However, note that the algorithm as described is not com-
plete. Although the abstract policy obtained by regressing
a plan for the abstract problem cannot exhibit any loops, its
application over the concrete problem may result in infinite
loops in the abstract space. Consider the case in which the
abstraction is extremely coarse and can only distinguish be-
tween goal and non-goal states. If the initial state is not a
goal state, an abstract plan will consist of a single action that
transitions from a non-goal state to a goal state. If this action
is always applicable (e.g., by having no preconditions) and
repeated application of it will never revisit a state (e.g., by
always incrementing some numeric variable), then ARGUS
will continue to recursively apply this action and expand the
reached state.

We believe that this specific issue will not be seen in prac-
tice, if more elaborate abstractions are used. In fact, we argue
that the loop-like behavior is desirable, as it allows for repeat-
edly applying an action that incrementally brings the concrete
state closer to satisfying an important condition. When that
condition is satisfied, the abstract state should also change.
As an example, consider a simple problem in which there is
only one numeric variable that represents some resource that
can be produced or consumed. The goal can only be reached
by applying an action that consumes a large amount of the re-
source, but the resource can only be produced in small quan-
tities. If we assume the abstraction can distinguish between
states in which the consuming action can be applied and those
in which it cannot, we will obtain a policy that recommends
applying the production action, followed by the consumption
action. Applied directly, the policy would fail, but ARGUS
will repeatedly apply the production action until transitioning
to a state in which consumption is possible.

Furthermore, the use of a standard best-first search algo-
rithm as a base for ARGUS ensures that the algorithm can
successfully recover from reaching a dead-end. Indeed, main-
taining an OPEN list of reachable but unexpanded nodes guar-
antees that, before reaching the goal, we will always be able
to expand some node. This means that the only reason why
the algorithm can be incomplete is the aforementioned case
in which it attempts to completely explore some infinite re-
gion that does not contain the goal. That said, implementing
a solution for this particular problem can be done by defin-
ing a limit on the number or depth of the extra expansions,
although we have not experimented with this.

4 Abstraction for Numeric Domains
In this section we describe the specific approach we take
when constructing abstractions for numeric planning prob-
lems. The general idea is to consider the set of all numeric
conditions present in the problem description and to introduce
new classical variables to act as proxies for these conditions.

Algorithm 4 describes this process. Initially (lines 1–5) we
build the set of all numeric conditions present in the problem
and we copy the set of classical variables, the classical initial
state, and the classical goal. The loop in lines 6–9 creates
new variables that will act as proxies for the corresponding
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Algorithm 4: Abstraction of Numeric Planning Problem
into Classical Planning Problem

1 Algorithm Abstract(Π)
Input: Π “ xV,N , s0, n0, s‹, n‹,Oy, a numeric planning

problem
Output: Πα, an abstracted version of Π, without numeric

variables
2 NUMCONDS Ð n‹ Y

Ť

oPO preNo
3 Vα Ð V
4 sα0 Ð s0

5 sα‹ Ð s‹
6 for c P NUMCONDS do
7 Create a new variable vc with domain

Dv “ ttrue,falseu
8 Vα “ Vα Y tvcu
9 Update sα0 so that sα0 pvcq “ n0pcq

10 for c P n‹ do
11 Update sα‹ so that sα‹ pvcq “ n‹pcq

12 Oα
“ ∅

13 for o P O do
14 pre Ð preo; eff Ð effo
15 may` Ð ∅; may´ Ð ∅
16 for c P preNo do
17 Update pre so that prepvcq “ true

18 for c P NUMCONDS do
19 Update eff so that effpvcq “ δΠppreNo , oqpcq
20 if effpvcq is still undefined then
21 if there exists a numeric state n such that

n |ù preNo , npcq “ false and
δΠpn, oqpcq “ true then

22 may` Ð may` Y vc
23 if there exists a numeric state n such that

n |ù preNo , npcq “ true and
δΠpn, oqpcq “ false then

24 may´ Ð may´ Y vc

25 for add P 2may`

do
26 eff 1 Ð eff
27 Update eff 1 so that eff 1pvcq “ true for every

vc P add

28 for del P 2may´

do
29 Update eff 1 so that eff 1pvcq “ false for

every vc P del r add
30 Oα

“ Oα
Y txlo, pre, eff 1yu

31 return Πα
“ xVα, sα0 , sα‹ ,Oα

y

numeric conditions. The initial state is updated to reflect the
correct values the proxies should have (line 9). The loop in
lines 10–11 updates the goal condition to consider all the nu-
meric conditions present in the numeric goal.

After that, the loop in lines 13–30 builds the set of ab-
stract operators. This is accomplished by building a set of
abstract operators for each original operator. All of the ab-
stract operators that correspond to a given concrete operator
share the same preconditions, that correspond to the precon-
ditions of the original operator augmented with the proxies

for the relevant numeric conditions (lines 16–17). The algo-
rithm proceeds by considering every numeric condition and
testing whether the numeric effects of the operator will nec-
essarily make them true or false (line 19). If not, then it
continues to test whether or not there exist states in which the
operator is applicable and where the numeric effects of the
operator would change the result of evaluating the numeric
condition (in lines 21–24). Here, the auxiliary variables may`
and may´ are used to store the sets of all the proxy variables
whose truth value can be changed from true to false or
false to true, respectively. The nested loops in lines 25–
30 use the information gathered here to produce the set of all
combinations of possible effects. Each such combination cor-
responds to a new abstract operator. Note, however, that two
abstract operators created out of the same concrete operator
will have the same label.

The tests described in lines 21 and 23 can be implemented
with a solver that can handle the numeric conditions and ef-
fects, such as an SMT solver or a theorem prover. Specifi-
cally, the tests require finding whether or not there exists a
pair of assignments to the numeric variables such that the first
satisfies the numeric preconditions of o, the second is consis-
tent with what results from applying the numeric effects of o
over the first assignment, and the truth value of the numeric
condition c changes from one assignment to the other.

The output of Algorithm 4 is a classical planning problem
that corresponds to an abstracted version of the numeric plan-
ning problem given as input. Indeed, given a state xs, ny from
the problem Π “ xV,N , s0, n0, s‹, n‹,Oy, we can find its
corresponding abstract state αpxs, nyq by defining:

• αpxs, nyqpvq “ spvq for every v P V .
• αpxs, nyqpvcq “ npcq for every numeric condition c P
n‹ Y

Ť

oPO preo.

The following theorem establishes the correctness of the
abstraction. Every transition possible in the concrete prob-
lem has at least one corresponding transition in the abstract
space. Furthermore, the operators for corresponding transi-
tions share the same labels.

Theorem 1. As defined above, α is a state-aggregation ab-
straction. Given any pair of states S, S1 and operator o P O
such that δΠpS, oq “ S1, there exists some abstract operator
oα P Oα such that δΠpαpSq, oαq “ αpS1q.

Proof. Take any S “ xs, ny, S1 “ xs1, n1y and o such that
δΠpS, oq “ S1. LetOo be the set of operators inOα that have
label lo. Since 2may`

‰ ∅ and 2may´

‰ ∅, we know there
is at least one oα P Oo. We also know all such operators
affect all variables in V in exactly the same way as o. In
addition, it is easy to see that they are all applicable in αpSq.
We must prove that at least one oα P Oo has the correct effect
over the proxy variables.

Now, for every c P NUMCONDS where δΠppreNo , oqpcq
is defined, we know the execution of line 19 in Algo-
rithm 4 ensures that every oα P Oo is such that effoαpvcq “
δΠppreNo , oqpcq “ δΠpn, oqpcq “ n1pcq. For every other
c P NUMCONDS where npcq “ false and n1pcq “ true,
we know n |ù preNo , so line 22 is executed for this o and
c. The case where npcq “ true and n1pcq “ false is
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analogous. Since may` and may´ necessarily contain all the
remaining individual effects required to produce n1, we are
assured that the correct combination is produced.

As discussed above, the abstraction process adds one new
propositional variable for each distinct numeric condition
present in the original domain. As such, the number of vari-
ables in the abstract domain is linear in the size of the original
domain. However, for each operator in the original domain
we add a number of new operators that can be up to expo-
nential in the number of numeric conditions affected by the
original operator. Nonetheless, most domains have operators
that only affect a few domain variables, and will therefore
only affect a few conditions, so in practice the final size of
the abstract domain’s description is not much bigger than that
of the original numeric domain.

5 Experimental Evaluation
We implemented ARGUS as an extension to the Fast Down-
ward planning system [Helmert, 2006]. What follows is a
brief summary that outlines some key aspects of the imple-
mentation. First, the abstraction process works by taking a
lifted numeric planning problem specified in PDDL 2.1 [Fox
and Long, 2003] and producing an abstracted version with no
numeric variables, conditions, or effects. The tests used to
determine the possible effects of operators are evaluated us-
ing the Z3 Theorem Prover [De Moura and Bjørner, 2008].
The resulting classical planning problem is passed through
the preprocessing stages of Fast Downward. Finally, a mod-
ified version of the search component of Fast Downward is
used to find the abstract plan and to search in the concrete
domain with numeric variables.

The abstract search is performed as a greedy best-first
search using the FF heuristic [Hoffmann and Nebel, 2001], as
this is a standard approach to finding a solution quickly when
solution quality is not a priority. The concrete search algo-
rithm is a weighted A‹ (with w “ 5) modified with the AR-
GUS expansion procedure. We use weighted A‹ as a com-
promise between speed and a guarantee of escaping from in-
finitely large heuristic depressions. The search uses the exact
same heuristic used for the abstract search, which is the FF
heuristic as computed over the corresponding abstract states.
This heuristic is less informative than the Metric-FF heuris-
tic [Hoffmann, 2003], but can be computed for a more general
set of problems.

5.1 Evaluation of the Abstraction Process
In addition to the process described in Algorithm 2, we also
implemented a naive abstraction method. In this approach,
all numeric information in a problem is completely ignored,
which results in a much coarser abstraction than the one used
by the main approach. This both allows us to analyze the ef-
fects of using different types of abstractions, and gives a fall-
back method that can be used when the abstraction process
is prohibitively expensive. In our experiments, we refer to
the version of ARGUS that uses the full abstraction as AR-
GUS-standard and we refer to the version that uses the naive
abstraction as ARGUS-naive. Finally, we also implemented

a combined version that attempts to compute the full abstrac-
tion, but will use the naive abstraction when computing the
full one is impractical. We call this version ARGUS-combo.

5.2 Evaluation of Policy Guided Search
To effectively evaluate the effects of doing policy guided
search, we implemented a baseline planner that searches di-
rectly in the concrete space. This planner uses the abstraction
only to compute the heuristic values, and is then implemented
as a weighted A‹ algorithm with the same parameters and
heuristic used by our planner.

Finally, we also implemented a search algorithm similar
to the repair process we used in ASTER. Here, the policy
obtained from the abstract search is followed blindly until an
unhandled state is reached. At this point, we do a breadth-first
search from the reached state until reaching some state that is
handled by the policy. We then repeat the process starting
from this state. Note that since the abstraction process is dif-
ferent from the one used in ASTER, the resulting algorithm
is not equivalent, and can be used in the wider range of do-
mains ARGUS covers. In our experiments, we refer to this
re-implementation of ASTER as ASTER’.

5.3 Results
Experimental results in five standard benchmark domains
from the International Planning Competition [Long and Fox,
2003] are displayed in Tables 1 and 2. In addition, we include
reformulated versions of some of the domains (Depots-NL
and Rover-NL) where all (linear) numeric constraints have
been replaced by equivalent quadratic constraints. These
domains serve to highlight how our approach is a natural
method for adapting existing techniques and heuristics for
classical planning to numeric planning with non-linear nu-
meric expressions. As mentioned before, we compare our
approach using the abstraction described in Algorithm 4
(ARGUS-standard), the approach using the naive abstraction
(ARGUS-naive), a simple combination of both (ARGUS-
combo), our implementation of the ASTER repair procedure
(ASTER’), and the baseline planner. We also compare with
Metric-FF, as this is a well-known standard algorithm for
numeric planning that exhibits state-of-the-art performance,
and with ENHSP, which implements the ĥaddhbd` heuristic de-
scribed by Scala et al. (2016) and can handle more expressive
domains than Metric-FF. For our experiments, both planners
were configured as satisficing planners, ignoring all the opti-
mization aspects of the benchmark domains.

As mentioned, the combination of ARGUS and the naive
approach is simply a fallback scheme in which we first try to
use the elaborate abstraction process of Algorithm 4 and use
the naive abstraction if that cannot be done. This is useful in
problems where the lifted numeric conditions depend on ob-
ject variables that can take a large number of possible ground
values. In this case, the number of proxy variables that must
be created is too high to attempt verifying if a given action
can or will modify the value of each of them. In practice, our
implementation always attempts to compute the full abstrac-
tion and falls back to the naive approach when the standard
process reaches a predefined memory limit of 4GB.
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Domain ARGUS-standard ARGUS-naive ARGUS-combo Metric-FF ENHSP ASTER’ Baseline
Depots (22) 19 19 19 20 3 9 11

Driverlog (20) 20 20 20 17 11 20 18
Rovers (20) 11 8 11 10 8 10 10
Settlers (20) 5 1 5 8 – 2 2

Zenotravel (20) 1 18 18 20 15 0 18
Depots-NL (22) 19 19 19 – 3 9 11
Rovers-NL (20) 12 8 12 – 6 6 8

Total (102) 86 92 103 75 46 56 78

Table 1: Number of problems solved by each planner. For each instance, every planner was limited to a 30 minute runtime using at most
4GB of memory. These limits are applied to all preprocessing stages and search. ARGUS-standard and ARGUS-naive correspond to our
algorithm using the two types of abstraction described. ARGUS-combo attempts to use the richer abstraction and falls back to the naive one
if computing the former requires too much memory. ASTER’ is the implementation of the ASTER repair procedure over our abstraction. A
dash (–) signifies that the corresponding planner cannot solve problems from that specific domain. The first column shows the domain names
and, in parentheses, the total number of problem instances in that domain.

Metric-FF ENHSP Actual Search
Domain Length Time Length Time Time
Depots 0.94 0.11 1.00 29.51 0.97

Driverlog 1.04 0.19 1.12 196.14 0.79
Rovers 1.00 0.00 1.06 1.31 0.95
Settlers 0.98 0.011 N/A N/A 0.95

Zenotravel 0.99 0.0016 1.04 10.34 0.70
Depots-NL N/A N/A 1.00 25.51 0.95
Rovers-NL N/A N/A 0.98 184.80 0.99

Overall 0.99 0.08 1.05 78.20 0.95

Table 2: Proportional averages of plan length and times to solution
when comparing the algorithms to ARGUS-combo. For both length
and time, a value close to 1 implies that the specified algorithm has
similar performance to ARGUS-combo on the subset of problems
that both were able to solve. Values above 1 mean ARGUS-combo
has better performance. We also show the proportion of time spent
by ARGUS-combo doing actual search, as opposed to computing
the abstraction.

6 Conclusions and Future Work
The experimental results show that out approach is compet-
itive when compared to Metric-FF. When considering only
the standard benchmarks, we can see that the time needed
by Metric-FF to find solutions significantly outperforms AR-
GUS, although this does not reflect into a significant differ-
ence in coverage of solved problems. Moreover, the results
for the non-linear reformulations suggest that our approach
is an effective method for dealing with problems that require
more expressivity. The comparison with ENHSP further con-
firms this, and also highlights how the use of existing technol-
ogy for classical planning, such as the highly optimized Fast
Downward, can be beneficial for numeric planning. Nonethe-
less, since our algorithms do not consider any optimization
metrics and our abstraction process loses information regard-
ing the numeric dynamics of the problems, we expect ENHSP
would outperform ARGUS if optimization was important, or
if domains involved a greater number of (complex) numeric
constraints, relative to propositional aspects. That said, we
believe our approach can be combined with the ideas used in
ENHSP and other recent advances for numeric planning, as
ARGUS could certainly benefit from using more informed
heuristics in the concrete search space.

Indeed, the results also serve to highlight some of the cur-
rent limitations of our approach. First, Metric-FF severely
outperforms ARGUS when measuring runtime over the
problems solved by both algorithms. This is due to the fact
that the heuristic used by our algorithm is significantly less
informative than the Metric-FF heuristic. In addition, we can
see that ARGUS is not very effective in some domains, such
as Zenotravel. This is because the number of numeric con-
ditions affected by some of the actions in the domain is too
high. Since the abstraction process is exponential in that num-
ber, it cannot be completed in any reasonable amount of time
or without using too much memory.

In the future, we are interested in studying how similar
techniques can be applied to other problems with very large
search spaces. We believe the approach is a general way
of doing a form of refinement over a heuristic by exploit-
ing advances in classical planning. The approach is not lim-
ited to numeric planning, as reasonable abstractions can be
computed for many other classes of problems. We are par-
ticularly interested in exploring how our approach can be ap-
plied for generalized planning problems, where the goal is
to find a plan or policy that can solve multiple problem in-
stances [Levesque, 2005; Hu and De Giacomo, 2011]. In this
context, the notion of having plans that loop is clearly useful,
and we believe our approach can be applied to this specific
objective and can be related to existing literature in that field
(e.g., Srivastava et al.; Srivastava et al. (2011; 2012)).

Acknowledgements
The authors gratefully acknowledge funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC).

References
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