
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Generalized Planning via Abstraction: Arbitrary Numbers of Objects

León Illanes, Sheila A. McIlraith
Department of Computer Science

University of Toronto, Toronto, Canada
{lillanes, sheila}@cs.toronto.edu

Abstract

We consider a class of generalized planning problems based
on the idea of quantifying over sets of similar objects. We
show how we can adapt fully observable nondeterministic
planning techniques to produce generalized solutions that are
easy to instantiate over particular problem instances. We also
describe how we can reformulate a classical planning prob-
lem into a quantified one. The reformulation allows us to
solve the original planning task without grounding every ac-
tion with respect to all objects in the problem, and a single
solution can be applied to a possibly infinite set of related
classical planning tasks. We report experimental results that
show our approach is a practical and promising technique for
solving an interesting class of problems.

1 Introduction
The potential for broad applicability of sequential decision
making, and in particular for AI automated planning, is bur-
geoning with increased automation in key sectors includ-
ing transportation, fulfillment, and e-commerce. A common
property of many of these decision-making tasks is that they
are addressing the same basic problem from day to day. For
example, each day, UPSTM must decide how to ship pack-
ages of varying numbers, sizes, and types, to varying loca-
tions, via different modes of transportation. Fulfillment cen-
tres similarly restock shelves daily. What changes from day
to day is the number and types of objects, how they need to
be moved, and where they are shelved in the fulfillment cen-
tre. These businesses typically operate at a massive scale.
In 2015 UPS delivered roughly 4.7 billion packages to 10
million customers, via 110,000 delivery vehicles and 1,955
daily flight segments (UPS 2016).

If we look at these decision-making problems as a col-
lective, we see that UPS’s package delivery problems, or
Amazon’s restocking problems, each correspond to a fam-
ily of problems that, when viewed abstractly, share a com-
mon solution form. Solving such problems using automated
planning has two limitations: the first is that automated plan-
ning treats each problem instance as a new planning problem
without leveraging patterns that are common to all solutions.
More critically, while AI planning algorithms continue to

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

advance in speed and efficiency, they cannot solve problems
of the massive scale demanded by these industries.

In this paper we advance a vision for a new approach to
sequential decision making that leverages the power and ef-
ficiency of state-of-the-art automated planning techniques,
while exploiting abstraction and generalization to automat-
ically generate what can be seen as domain-specific, but
instance-independent planners that can be instantiated – of-
fline or at execution time – to perform sequential decision
making at a massive scale for families of planning prob-
lems. These domain-specific and instance independent plan-
ners are compact, simple programs with looping structures
and conditionals that follow different control flow depend-
ing on the problem instance.

Our work realizes this vision by leveraging ideas from
a number of different areas of research including gener-
alized planning (e.g., (Levesque 2005; Hu and Levesque
2009; Srivastava, Immerman, and Zilberstein 2008; Hu and
Levesque 2010; Hu and De Giacomo 2011)), numeric plan-
ning (e.g., (Srivastava et al. 2011; Illanes and McIlraith
2017)), and techniques for recognizing indistinguishable
objects in planning domains (Riddle et al. 2015; 2016;
Fuentetaja and de la Rosa 2016).

We introduce LOOM, a planning algorithm that solves
families of problems where separate instances differ in the
number of objects present. Our approach ignores the dis-
tinctions between certain objects of the same type and com-
putes a cyclic policy for the resulting abstract problem. The
resulting policy is a form of domain-specific but instance-
independent planner that can be applied over concrete prob-
lem instances. We evaluate LOOM over a suite of general-
ized planning problems. The results show our approach is
capable of quickly finding general solutions, and that these
can be instantiated into plans for specific problems orders of
magnitude faster than planning from scratch, without signif-
icant changes in plan quality.

2 Preliminaries
The families of planning problems we consider can be
viewed as a form of generalized planning problem (e.g.,
(Srivastava et al. 2011; Hu and De Giacomo 2011)). We in
turn define these generalized planning problems in terms of
basic planning problems. Here, a basic planning problem
comprises a domain description and specifics of the prob-

7610



lem instance. A basic planning problem domain,D is a tuple
〈T, P,A〉, where:

• T is a set of (possibly hierarchical) types,
• P is a set of (typed) predicates, and
• A is a set of action schemata.

Each action schema a ∈ A, is defined by a tuple a =
〈params(a),pre(a),eff(a)〉, where:

• params(a) is a sequence of typed variables called the
parameters of a, and

• pre(a) and eff(a), respectively known as the precondi-
tions and effects of a, are sets of first-order literals built
using the predicates in P and the variables in params(a).

For convenience, we will refer to the set of atoms that
appear as positive literals in the effects of an action as
eff+(a). The set of atoms that appear in negative literals
will be referred to as eff−(a).

Finally, a basic planning problem is a tuple P =
〈D, O, I,G〉, where:

• D is a planning domain 〈T, P,A〉;
• O is a set of typed object constants, using the types in T ;
• I , the initial state of P , is a set of ground atoms in first-

order logic, built using the predicates in P and the object
constants of O;

• G, the goal condition of P , is a set of ground literals built
in the same way as the atoms in I .

A state is a truth assignment to each predicate in P ground
with the subset of object constants inO that respect the pred-
icate types. In keeping with the convention established in
classical planning, a state is parsimoniously represented by
the set of positive literals. Those literals not mentioned are
interpreted as false, following a closed-world assumption. I
is defined in this manner.

A ground formula that is restricted to a conjunction of
literals can also be represented parsimoniously as a set of
literals and corresponds to the set of states for which this
conjunctive formula holds. We refer to such a representation
as a partial state. The goal condition, G, is defined in this
manner. We use the notation S |= S′ to denote that the con-
dition captured by partial state S′ holds in state S.

Given an action schema a ∈ A and the set of object con-
stantsO, we can build a ground action by substituting object
constants of the appropriate type for every parameter of a.
Using the sequence of object constants o = (o0, o1, . . .), we
will refer to this ground action as a(o) = a(o0, o1, . . .).

Now, given a ground action a(o) and some state S, we say
that a(o) is applicable over S if and only if S |= pre(a(o)).
The state that results of applying a(o) over state S is given
by the following transition function:

δ(S, a(o)) = (S r eff−(a(o))) ∪ eff+(a(o))

Note that the transition function can easily be adapted to
work over partial states.

Running example (Package delivery domain). To avoid
confusing the reader with unnecessary detail, we consider
a very simple domain in which a number of packages must

be delivered from a source location to either of two other lo-
cations, A or B. The packages are transported by a truck, and
can be loaded and unloaded from it at any of the three loca-
tions. In a more detailed variant of this problem, we would
have types for package, truck, and location. Here we limit
ourselves to typing packages using specially named predi-
cates for the different locations and the truck.

We specify the domain as D = 〈T, P,A〉, where:

T = {pkg}
P = {at-src(pkg),at-A(pkg),at-B(pkg),

in-truck(pkg),truck-at-src,

truck-at-A,truck-at-B}
A = {load-at-src(pkg),unload-at-src(pkg),

load-at-A(pkg), · · · ,drive-A-B}
In the interest of space, we provide a single example of an

action, a = load-at-A(pkg):

params(a) = {p : pkg}
pre(a) = {at-A(p),truck-at-A}
eff(a) = {¬at-A(p),in-truck(p)}

The example illustrates what we believe is a common is-
sue in the application of planning techniques to real-world
problems. Oftentimes, a user will need to solve a single
problem multiple times with slight variations on the initial
state (total number of packages, and how many are destined
for each location), but the same high-level goal description
(every package must be at its destination). There is, then, a
need for a system that can either take advantage of the work
done in previous iterations, or one that effectively produces a
general solution that can easily be applied to every instance.

In this work, we envision the latter case, and imagine a
user that will describe the problem in a general way, estab-
lishing the high-level goal and the common properties of all
possible initial states. The system will then produce a gen-
eral solution that is guaranteed to work on any problem in-
stance that satisfies the conditions established by the gen-
eralized problem. Verifying whether a given instance does
match the general problem can be easily done, and instan-
tiating the general solution into a specific solution for the
instance is much faster than planning for the instance from
scratch. In the next sections we will describe an adequate
formalism for specifying these tasks and an algorithm for
producing the solutions. In addition, in Section 6, we briefly
outline a method for reducing the modeling burden by infer-
ring a generalized problem out of a single classical instance.

3 Generalized Planning Problems
A generalized planning problem P is informally defined as
a (possibly infinite) set of basic planning problems, so that
P = {P0,P1, . . .}. In this section we describe how such sets
can be characterized succinctly by defining a class of gener-
alized planning problems that we call quantified planning
problems. Such quantified planning problems will serve as
the input specification to our solver.

We define a quantified planning problem as a tuple Pq =
〈Dq, Oq, Iq, Gq〉, where:

7611



• Dq is a quantified planning domain,
• Oq is a set of (non-quantifiable) typed objects,
• Iq is the initial quantified state, and
• Gq is the quantified goal condition.

In turn, a quantified planning domain is defined as a tuple
Dq = 〈T, Tq, P,A〉, where:

• T is a set of types,
• Tq is a set of quantifiable types that refine the types of T ,
• P is a set of typed predicates, and
• A is a set of action schemata.

A quantified state is defined by a set of first-order logic
atoms built using the predicates in P and the constants from
Oq , and a set of existentially quantified atoms built using the
same predicates and constants in addition to distinct vari-
ables used for quantification.

The quantified goal condition similarly consists of a set
of first-order logic literals constructed from P and Oq , and
a distinct set of universally quantified atoms drawn from P .

Note that in all cases the predicates are typed, so the quan-
tification must be type-bounded. To represent this, we define
the following notation:

∀[x : p(x)] ϕ def
= ∀x. p(x)→ ϕ

∃[x : p(x)] ϕ def
= ∃x. p(x) ∧ ϕ

The sets of types, predicates, and action schemata are de-
fined exactly in the same way as for the basic planning prob-
lems described in Section 2. That said, some care must be
taken in the case of ground actions. Although they are de-
fined in the same way as before, their effects differ slightly.

Consider for example a quantified state in which the fact
∃[x : type(x)] P(x) holds, and some action that has the ef-
fect ¬P(c). If c was the only witness for the existentially
quantified fact held, then the result of applying this action
over this state is a state in which the fact does not hold. Oth-
erwise, if c was just one among many objects for which the
fact held, then the result is a state in which the fact still holds.
As such, the application of an action can have multiple pos-
sible outcomes, and this observation is key to the realization
of our solver. Formally, we deal with this form of uncertainty
by modifying the transition function so that it produces the
set of all the quantified states that may be reached by apply-
ing a given ground action over a given quantified state.

Running example (Generalized package delivery). Con-
sider the simple planning domain example D = {T, P,A}
described in Section 2 and imagine a system that is meant
to perform this same task every day, but with different
numbers of packages meant to go to each destination. The
corresponding quantified domain can be given by Dq =
〈T, Tq, P,A〉, where the types in Tq refine T by having one
type of package for each destination location:

Tq = {pkg-for-A,pkg-for-B}

The generalized planning problem is given by Pq =

〈Dq, Oq, Iq, Gq〉 where:

Oq = ∅,
Iq = {truck-at-src,

∃[a : pkg-for-A(a)] at-src(a),

∃[b : pkg-for-B(b)] at-src(b)}, and
Gq = {∀[a : pkg-for-A(a)] at-A(a),

∀[b : pkg-for-B(b)] at-B(b)}.

Here, there are no objects other than the packages, which
will be quantified. Furthermore, the packages are partitioned
into two sets by means of the type refinement: those that are
to be taken to location A and those that must be taken to B.
The initial state description establishes that the truck is at the
source location, and that there is at least one package meant
for A and at least one package meant for B at the source lo-
cation. The goal states that every package meant for location
A (or B) must indeed be at A (or B).

3.1 Corresponding Basic Planning Problems
As mentioned above, a generalized planning problem is
meant to represent a set of basic planning problems. Here
we give a precise description of the basic planning problems
that correspond to a particular quantified planning problem.

As the notation suggests, all the basic problems
that correspond to the quantified problem Pq =
〈〈T, Tq, P,A〉 , Oq, Iq, Gq〉 share the same domain D =
〈T, P,A〉. The set of basic planning problems is formed by
all problems of the form Pi = 〈D, Oi, Ii, Gi〉, such that:

• Oi ⊇ Oq ,
• every o ∈ Oi r Oq is of a type t ∈ T that is refined by

some type tq ∈ Tq ,
• Ii |= Iq , and
• Gi |= Gq and every g ∈ Gi is either already present inGq

or is a witness for some existentially quantified g′ ∈ Gq .

3.2 Generalized Plans, Policies and Solutions
As we have highlighted before, the goal of generalized plan-
ning is to find a single plan that can be applied to every
problem in a given set. Since it is infeasible to expect that
a singular sequence of actions would be an adequate solu-
tion for multiple planning problems, a generalized plan must
include either a procedure to generate a specific plan for a
given instance or a system that allows the online execution
of the generalized plan over the instance. Note that in the
absence of uncertainty over the outcomes of actions, the two
approaches are effectively equivalent since the execution of
the generalized plan may be simulated to obtain a plan.

In our work, the solutions to our quantified planning prob-
lems – our generalized plans – take the form of partial poli-
cies. In general, a policy is a function that maps from states
to actions. In this case, we are interested in policies that map
from partial quantified states to partially grounded actions.
The instantiation of such a policy into a plan for a specific
instance requires simulating its execution. At every step, we
must perform a very restricted search over the objects in the
instance in order to find some which allow full grounding of

7612



Π(S) =



load-at-src(pkg-for-A) if truck-at-src ∈ S ∧ ∃[a : pkg-for-A(a)] at-src(a) ∈ S
load-at-src(pkg-for-B) if truck-at-src ∈ S ∧ ∃[a : pkg-for-A(a)] at-src(a) 6∈ S

∧∃[b : pkg-for-B(b)] at-src(b) ∈ S
drive-src-A() if truck-at-src ∈ S ∧ ∃[a : pkg-for-A(a)] at-src(a) 6∈ S

∧∃[b : pkg-for-B(b)] at-src(b) 6∈ S
unload-at-A(pkg-for-A) if truck-at-A ∈ S ∧ ∃[a : pkg-for-A(a)] in-truck(a) ∈ S
drive-A-B() if truck-at-A ∈ S ∧ ∃[a : pkg-for-A(a)] in-truck(a) 6∈ S
unload-at-B(pkg-for-B) if truck-at-B ∈ S ∧ ∃[b : pkg-for-B(b)] in-truck(b) ∈ S

Figure 1: A policy that solves the generalized package delivery problem. The goal is to take every package of type pkg -for-A
to the A location, and every package of type pkg -for-B to the B location. In the initial state, every package is at the source
location. Note that the actions selected by the policy are lifted, and refer to types instead of specific objects. The actual execution
of the policy requires inspecting the current state to select appropriate objects to ground the actions.

the action. Given a quantified planning problem and an as-
sociated policy, the policy is a solution if and only if it can
produce a plan for every instance in the set of corresponding
basic planning problems.

An interesting property that results from using policies as
solutions is that a given policy can be used to solve problems
other than those that exactly correspond to the generalized
problem. Consider a given policy that solves a specific gen-
eralized planning problem, and consider a separate problem
which shares the same goal. If the initial state of this new
problem is contained within the envelope of the policy, then
the policy is also a solution for it.
Running example (Policy for generalized package delivery
problem). The policy Π defined in Figure 1 is a solution for
the running example. The execution of the policy over any
instance results in a plan that first loads every package that
must go to A onto the truck, then loads every package that
goes to B, then drives the truck to A, unloads every pack-
age that must be at A, drives to B, and finally unloads every
package that must be at B. The specific order in which the
packages of the same type are loaded or unloaded from the
truck is not described by the policy.

4 Finding Generalized Solutions
To synthesize a policy that solves a given generalized plan-
ning problem, our algorithm repeatedly repairs an existing
weak partial policy that is guaranteed to be terminating. The
algorithm is finished when the repairs result in the policy be-
ing goal-closed. At this point the policy has been proven to
be a strong cyclic solution for the problem. To give precise
details about the main algorithm and its key subprocedures,
we first need to define how a policy is implemented and how
its termination can be verified by representing it as a graph.

Following Fully Observable Nondeterministic (FOND)
planner, PRP (Muise, McIlraith, and Beck 2012), we de-
fine the implementation of a partial policy in terms of a
rule set R and a selection function Φ. R is a set of pairs
of partial states and actions, and R(S) denotes the subset
of state-action pairs 〈S′, A〉 ∈ R such that S |= S′. Φ
is a partial function that selects a single action from a set
of state-action pairs. Then, a partial policy can be defined

as Π(S) = Φ(R(S)), and we will say that any state S for
which Π(S) is defined is a state that is handled by Π. With
this formalism, a plan can be generalized into a partial pol-
icy by repeatedly regressing from the reached state back to-
wards just before the first action in the plan. At each step,
this produces a partial state and an action, so the result is a
rule set. Finally, we use the selection function that always
chooses the action that is paired with the partial state that is
closest to the goal. The formalism also allows us to easily
combine multiple such policies together by simply using the
union of their rule sets.

The policy Π defined by rule setR and selection function
Φ can be represented as a directed graph with vertices for
each partial state S such that there is some pair 〈S,A〉 ∈
R and two additional vertices, > and ⊥, that respectively
represent all goal states and all unhandled states. There is
an edge between the vertices corresponding to partial states
S and S′ if and only if there is some state in δ(S,Π(S))
that satisfies S′. Similarly, there is an edge from S to > if
there is a goal satisfying state in δ(S,Π(S)), and there is an
edge from S to ⊥ whenever there is an unhandled state in
δ(S,Π(S)). We say this edge is labeled by the action Π(S).

The main procedures used by our algorithm are described
in Algorithm 1 and Algorithm 2. At a high level, the algo-
rithm works by exploring the states that are reachable by the
current policy (loop in lines 6–14). Whenever it reaches a
state that cannot be handled, it attempts to update the policy
(line 11). The update procedure works by repeatedly gener-
ating a weak plan that can reach from the unhandled state to
the goal or to some other already handled state (line 20). The
plan is subsequently regressed into a weak policy (line 25),
and an attempt is made to verify that integrating this pol-
icy onto the main one will result in a terminating policy
(line 27). If this verification is successful, the main policy
is updated (line 28). Otherwise, the algorithm continues to
find alternative weak plans to deal with the unhandled state.
If no plan is found, the state is marked as a deadend (line 22)
and the repair fails. If the initial state is recognized as a dead-
end, then we know that our system cannot find a generalized
solution for the problem at hand. When this occurs in our
implementation, we return the best policy found so far.

7613



Algorithm 1: The LOOM planning algorithm
1 Algorithm LOOM

Input: A generalized planning problem
P = 〈〈T, P,A〉, I, G〉

Output: A solution policy Π for P
2 Initialize Π to the empty policy.
3 repeat
4 Open← {I}
5 Seen← ∅
6 repeat
7 S ← Open.pop()
8 if S 6|= G and S 6∈ Seen then
9 Seen.add(S)

10 if Π(S) = ⊥ then
11 UPDATE(Π, S,A,G)

12 if Π(S) 6= ⊥ then
13 Open← Open ∪ δ(S,Π(S))

14 until Open is empty
15 PROCESSDEADENDS()
16 until Π does not change
17 return Π

18 Procedure UPDATE
Input: A policy Π, a state S, a set of actions A, a

goal G
19 repeat
20 π ← NEXTWEAKPLAN(S,A,G,Π)
21 if π = ⊥ then
22 Mark S as a deadend.
23 return
24 else
25 Π′ ← REGRESS(π)

26 Γ← GRAPH(Π + Π′)
27 until TERMINATES(Γ)
28 Π← Π + Π′

As with PRP, the outer loop of the main algorithm
(lines 3–16) ensures that the process only finishes when no
unhandled states remain, or when there is no solution. Dead-
ends can be handled by forbidding state-action pairs that
result in deadends, and restarting the process from scratch
without using them. If the initial state is detected to be a
deadend, then the algorithm returns no solution.

Finally, the test for termination works by decomposing the
graph corresponding to the policy into its strongly connected
components, and recursively verifying that it is impossible
to infinitely loop within one of these. For a single strongly
connected component, the process consists of removing all
edges that are labeled with actions that delete some quanti-
fied atom that is not added by some other edge in the same
component. If the resulting graph is acyclic, then the policy
is known to terminate. Otherwise, removing some edges can
cause it to no longer be strongly connected and the process
can be applied recursively. Effectively, the procedure guar-
antees that the graph does not have a cycle in which atoms

Algorithm 2: The termination verification procedure
used by LOOM

1 Procedure TERMINATES
Input: A graph Γ
Output: TRUE only if Γ corresponds to a

terminating policy
2 repeat
3 Remove e from Γ.
4 until there is no edge e in Γ that deletes some

quantified atom that is not added elsewhere in Γ
5 if Γ is acyclic then
6 return TRUE

7 if no edge was removed then
8 return FALSE

9 foreach strongly connected component Γ′ of Γ do
10 if ¬TERMINATES(Γ′) then
11 return FALSE

12 return TRUE

are deleted and added again, so that during execution the
same concrete states are visited over and over, in an infi-
nite loop. Note that the process is correct but not necessarily
complete, and some terminating policies may be rejected.

Lemma 1 (Soundness of TERMINATES.). The execution of
TERMINATES(Γ) itself always terminates, and returns TRUE
only if Γ corresponds to a terminating policy.

Proof sketch. The proof is based on the proof of Theorem
4 in (Srivastava et al. 2011), which addresses policies for
qualitative numeric planning problems, where actions non-
deterministically increment and decrement a set of numeric
state variables and where the goal is to set all of them to zero.
The proof operates by induction over the recursive step. As a
base case consider an input graph Γ0 which results in return-
ing immediately (line 6) after removing some edges (lines 3–
4). We know the only cycles in Γ0 are ones in which some
quantified atom is deleted without being added again. In any
concrete problem instance, repeatedly deleting these quanti-
fied atoms will eventually result in all of them being deleted.
Then, the quantified statement must become false and the cy-
cle must terminate. Therefore, every cycle in Γ0 eventually
terminates, and so Γ0 represents a terminating policy.

Now consider an arbitrary graph Γ that does not become
acyclic after removing edges. TERMINATES(Γ) will return
TRUE only if every strongly connected component of Γ is
proven to terminate (lines 9–11). By induction, the proce-
dure is correct for every such component. If every compo-
nent must terminate, then there are no possibly infinite loops
in Γ, and the policy represented by it is terminating.

Theorem 1 (Soundness of LOOM). A policy Π returned by
LOOM for problem P is a solution for P .

Proof sketch. From 1, any policy returned by LOOM termi-
nates. LOOM returns when Open is empty and there are no
deadends to process. At this point, every state reachable by

7614



the policy has been inserted into Open at some point in the
last iteration of the outer loop. Every state that was removed
from Open is either a goal state or is handled by Π. Since
every terminal state reachable by Π is a goal state and Π is
known to terminate, then Π must be a solution for P .

5 Executing Generalized Policies
So far, we have described a formalism in which a user may
specify a generalized planning problem, and an algorithm
that can correctly produce general policies for problems so
specified. Now, given a particular basic planning problem,
the user will be interested in two things. First, the user must
establish whether the basic planning problem belongs to the
generalized problem for which the policy was computed.
Subsequently, the user will want to instantiate the gener-
alized policy over the basic problem, in order to obtain an
executable plan.

Verifying whether the given instance matches the general
problem can be easily done by ensuring that the instance sat-
isfies the definition of a corresponding basic planning prob-
lem given in Section 3.1. The actual instantiation of the pol-
icy can be done online, by directly executing it over the basic
planning problem. At each step, evaluating the policy over
the current state will produce a partially grounded action, in
which some of the action parameters refer to ground objects,
and some refer to existentially quantified ones. By construc-
tion, finding a fully grounded action that is applicable to the
current state is always possible, and can be done simply by
searching over the space of objects that match the types of
the parameters until finding a mapping that results in an ex-
ecutable ground action.

6 Generalizing a Basic Planning Problem
Modeling a real world problem as a generalized planning
problem requires identifying which types of objects to quan-
tify over. This can be challenging for some. Consider extend-
ing our simple running example to more accurately represent
a distribution network by allowing for a large number of dif-
ferent locations that are not all directly connected to each
other. It is easy to see that no memoryless policy can general-
ize to arbitrarily connected locations, as any solution would
have to implement a graph search algorithm. Nonetheless,
the request may seem natural to an uninformed end user,
who would model the problem with quantified locations and
would finally obtain no solution.

To ease this modeling issue, we propose and describe a
method that builds a quantified planning problems out of
an single basic planning problem example. As expected,
the method produces quantified planning problems that only
quantify types that can effectively be quantified. Further-
more, the description of the task clearly specifies which ba-
sic planning problems correspond to it.

The approach is based on existing reformulation tech-
niques that have been designed to address symmetry issues
in classical planning. In particular, our work uses the tech-
niques described by Fuentetaja and de la Rosa (2016) and by
Riddle et al. (2016). At a very high level, both of these works
strive to reduce symmetry in a given planning problem by

identifying sets of indistinguishable objects. They then re-
formulate the problem to model those sets by counting its
elements instead of representing every object explicitly.

For our purposes, we can use the exact same techniques
to identify sets of indistinguishable objects. Each of these
sets is then to be represented by a new quantifiable type that
refines the actual type of the objects. This results in a quanti-
fied planning problem that represents problems in which the
number of elements in those sets is different.

7 Experimental Evaluation
We implemented our main LOOM algorithm by modifying
the existing codebase for FOND planner PRP1, which in
turn is based on the implementation of the Fast Downward
Planning System (Helmert 2006). The modifications include
adapting the parser to deal with quantified planning prob-
lems, implementing the termination verification procedure,
and many other lesser modifications. The use of the existing
systems allows us to take advantage of advances in FOND
and classical planning algorithms and heuristics.

In addition, we implemented a system for instantiating a
policy into a plan for a particular basic planning problem in-
stance. This process works by simulating the execution of
the policy over the problem. At every step, the policy sug-
gests a partially grounded action, and the system searches
among the objects of the problem for some that satisfy the
preconditions of the action in the current state. The resulting
ground action is applied over the state, and the process is re-
peated. The trace obtained from this execution corresponds
to a plan for the problem.

Finally, we also implemented the generalization process
described in Section 6. This implementation is based on the
work done for Baggy (Riddle et al. 2016).

In general, the performance of a generalized planning sys-
tem has multiple dimensions, and there are important trade-
offs expected between them (Srivastava, Immerman, and
Zilberstein 2011). In particular, we are interested in mea-
suring (1) how long it takes for our system to produce a gen-
eralized solution for a given generalized problem, (2) how
quickly we can test whether or not that solution is applica-
ble to a given basic planning problem, (3) how long it takes
to instantiate the solution into a plan, and (4) the quality
(length) of the resulting instantiated plan. More generally,
we are interested in empirically verifying that our approach
is feasible, and that in many cases it is actually beneficial to
compute generalized solutions instead of solving the basic
planning problems separately.

To this end, we benchmarked our algorithms over a set
of generalized planning problems. The set includes general-
ized planning problems from existing literature (Recycling),
well-known classical planning problems that can be mod-
eled with quantification (Logistics, Hamburger), and some
new domains specifically crafted to showcase the advantages
and possible pitfalls of our approach (Construction, Round-
about). In all cases, the modeling assumes full observability
and deterministic actions.

1https://bitbucket.org/haz/planner-for-relevant-policies

7615



LOOM LAMA-FIRST
Problem (Size Range) Solving time (s) Policy size Instantiation time (s) Plan length Planning time (s) Plan length

(normalized) [speedup] (normalized) (normalized) (normalized)

Recycling (10–200) 0.03 10 5.39 [55%] 6 11.99 6
Logistics (5–1000) 0.53 28 0.04 [-33%] 6.93 0.03 6.93

Hamburger (10–100) 0.03 14 0.05 [81%] 13 0.26 15.03
Construction (5–100) 0.17 19 0.10 [93%] 18 1.47 19.4

Roundabout (8–48) 297.89 11 0.004 [33%] 3.25 0.006 3.25

Table 1: Summary of the results obtained by LOOM and LAMA-FIRST over a suite of benchmark generalized planning problems.
The reported instantiation times, planning times, and plan lengths correspond to the averages over multiple basic planning
problems, normalized by the number of quantifiable objects in them. The range of problem sizes appears in parentheses on
the first column. In most domains, the quality of the instantiated solutions obtained with LOOM is comparable to that obtained
with LAMA-FIRST, but the instantiation time is significantly smaller. The relative speedup of instantiating a policy instead of
planning from scratch is shown in square brackets.

As a baseline to compare with, we use a trivial general-
ized planner that essentially ignores the generalized prob-
lem description and, when presented with a basic planning
problem, uses a classical planner to find a plan. Since we
are interested in finding solutions quickly, rather than find-
ing optimal solutions, the baseline uses a greedy best first
search algorithm using the FF (Hoffmann and Nebel 2001)
and LAMA (Richter and Westphal 2010) heuristics (i.e., the
LAMA-FIRST configuration of Fast Downward).

A summary of our results is displayed in Table 1. In most
of our benchmarks, finding a generalized solution is sur-
prisingly easy. An explanation for this is that the quantified
problems essentially amount to non-symmetrical reformula-
tions of the basic planning problems, and finding a solution
policy is only slightly harder than finding a solution for the
smallest corresponding basic planning problem.

An interesting exception is the Roundabout domain (in
which vehicles are routed one at a time through a round-
about), where our system is actually unable to prove that the
solution it builds is guaranteed to terminate. Although the
resulting solution can be proven to terminate by hand, the
fast and incomplete termination procedure we use to do this
automatically is incapable of doing so.

Finally, instantiating an existing policy over a given basic
planning problem is, in most cases, significantly faster than
planning from scratch. Furthermore, for massive instances,
a classical plan would be prohibitive in size. The abstract
policy presents a compact encoding of the solution that can
be instantiated on demand at execution time. The resulting
plans are of comparable quality to those obtained using a
fast satisficing planner. This suggests a confirmation of the
general merits of our approach, as it is clear that there are
domains for which finding and repeatedly applying general
solutions results in better performance than the traditional
alternative.

A specific case of results is shown in Figure 2. There,
we show how in the Construction domain a policy obtained
by LOOM is significantly more efficient than planning from
scratch for every instance. Results for other domains exhibit
similar basic profiles.

Figure 2: Cumulative number of problems solved over time
by both approaches in the Construction domain. The policy
computed by LOOM solves all problems in under 6 minutes.
Planning from scratch every time takes over 40 minutes. Ex-
periments in other domains result in similar performances.

8 Related Work
Our work is situated within the context of generalized plan-
ning, but borrows many ideas and techniques from a num-
ber of other areas in planning and artificial intelligence.
The broad idea of doing abstraction by grouping objects to-
gether has been explored for symmetry breaking in planning
tasks (Fox and Long 1999), and has more recently been used
for problem decomposition (Abdulaziz, Norrish, and Gret-
ton 2015) and in the problem reformulation approaches that
we mentioned in Section 6 (Fuentetaja and de la Rosa 2016;
Riddle et al. 2015; 2016).

An interesting perspective regarding symmetry breaking
is that most work on that topic focuses on imposing a canon-
ical order over the possible symmetric solutions. In contrast,
our work provides a system for formulating problems in
such a way that a solution represents a family of symmetric
ground solutions. The process of actually selecting a ground

7616



solution from the generalized one is easy, and the general-
ized solution can also be used in an online manner.

An idea that relates to the use of abstraction by object ag-
gregation is used for producing generalized solutions out of
example plans by the planner Aranda (Srivastava, Immer-
man, and Zilberstein 2008). There, objects are grouped to-
gether whenever they satisfy the same set of unary predi-
cates, and the imprecisions that arise in the problem’s tran-
sition system are dealt with by doing 3-valued logic analy-
sis (Sagiv, Reps, and Wilhelm 2002).

Recent work has focused on modeling the imprecisions
and uncertainty produced by abstraction as unfair fully-
observable nondeterministic effects. One such example is
a line of work concerned with the synthesis of finite-state
controllers for conformant and generalized planning (Bonet
and Geffner 2015; Bonet et al. 2017), where the unfairness
is handled by enforcing relevant trajectory constraints. A
different example is the use of abstract policies to guide
search in domains with numeric state variables (Illanes and
McIlraith 2017), where the issues with unfairness are dealt
by falling back to traditional search methods whenever the
guidance is ineffective. In our work, we directly exploit the
fact that we do have a model for how the unfair nondeter-
minism resolves and implement a termination verification
process into the search for a solution.

The specific termination algorithm we use is based on the
one used for the verification of policies for qualitative nu-
meric planning problems, where actions arbitrarily and non-
deterministically increment or decrement a set of numeric
state variables (Srivastava et al. 2011). A key distinction
stems from the fact that in our work actions are explicitly
deterministic. We only use nondeterminism to model the re-
sults of applying the same action over different states that
happen to be indistinguishable in our representation formal-
ism, whereas the actions in their setting do actual nondeter-
ministic effects. This has a significant consequence in that
it means finding policies for their problems is theoretically
harder, and therefore proving that a given policy may effec-
tively loop forever is actually easier. As such, their termi-
nation verification algorithm is complete, whereas ours is
not. In a further interesting contrast to our work, the policy
search paradigm presented by Srivastava et al. is based on
exploring the space of goal-closed policies until finding one
that is guaranteed to terminate. Conversely, LOOM can be
said to search the space of terminating policies until reach-
ing one that is goal-closed.

Finally, a different proposal for reformulating generalized
planning problems into fully-observable nondeterministic
planning problems and then using an off-the-shelf planner
for the latter class of problems was recently given in (Bonet
and Geffner 2018). The work presented in that paper is
framed within the broader context of dealing with general-
ized planning problems in which the sets of ground actions
vary across the different basic planning problems. The spe-
cific problem we deal with, in which different basic prob-
lems involve different sets of objects, falls within this con-
text. Of course, the sort of FOND planners needed to solve
problems like these are those that produce strong cyclic so-
lutions, and which are based on the assumption of fair non-

determinism. As such, the translation approach is directly
applicable only to a restricted class of problems in which
this assumption does not significantly mislead the planners.
Put simply, this restriction limits the approach to work only
on problems in which actions affect the generalized objects
only in one direction, so that work done by some action is
not undone by another. To use the approach in more general
cases, the authors point out the need for special translations
such as the one described in (Bonet et al. 2017), although
they note that that particular translation is not sound. In our
work, we address the impact of unfair nondeterministic ac-
tions by using the sound but incomplete termination verifica-
tion procedure described in Algorithm 2. This is in no way
limited to the aforementioned restricted class of problems,
and is in fact complete for it.

9 Conclusions and Future Work

As discussed in Section 1, our work advances a vision for
sequential decision making that recognizes the importance
of domain-specific solvers and strives to design systems that
can automatically generate them. We believe LOOM presents
a major step towards realizing this vision. The abstract poli-
cies we generate form a sort of domain-specific planner,
providing compact solutions to families of planning prob-
lems of massive (often unbounded) size, and our experi-
ments demonstrate that they can be used to find plans sig-
nificantly faster than a standard satisficing classical planner.

The endeavor and our results raise a number of important
questions. First, our approach uses an efficient but incom-
plete method for verifying policy termination, and exploring
alternatives is an interesting open avenue for research.

Furthermore, the quality of the instantiated plans is com-
parable to that of a satisficing planner, but in order to use
something like our approach in a real-world industrial set-
ting we would like to further optimize for quality. We be-
lieve our approach can be adapted to find richer policy struc-
tures, which can then be used with execution monitoring
techniques for optimization (e.g., Fritz and McIlraith 2007).

Finally, we have argued that generalized plans can be un-
derstood to be domain-specific planners, and as such that
generalized planning tasks are effectively program synthe-
sis tasks. We believe our work – and other work in gener-
alized planning – can be connected to many important re-
search topics in the areas of program and software synthe-
sis, broadly construed (e.g., (Manna and Waldinger 1980;
Solar-Lezama 2008; Srivastava, Gulwani, and Foster 2010))
and that this work further advances the connection between
planning and program synthesis.

Acknowledgements

We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), and from Microsoft Research. In addition, we
wish to extend our gratitude to Xi Yan for her invaluable
help in setting up and running our experiments, and to Ro-
drigo Toro Icarte for comments on an earlier draft.

7617



References
Abdulaziz, M.; Norrish, M.; and Gretton, C. 2015. Exploit-
ing symmetries by planning for a descriptive quotient. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI), 1479–1486.
Bonet, B., and Geffner, H. 2015. Policies that generalize:
Solving many planning problems with the same policy. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI), 2798–2804.
Bonet, B., and Geffner, H. 2018. Features, projections, and
representation change for generalized planning. In Proceed-
ings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI), 4667–4673.
Bonet, B.; Giacomo, G. D.; Geffner, H.; and Rubin, S. 2017.
Generalized planning: Non-deterministic abstractions and
trajectory constraints. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
873–879.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Proceedings of
the 16th International Joint Conference on Artificial Intelli-
gence (IJCAI), 956–961.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 144–151.
Fuentetaja, R., and de la Rosa, T. 2016. Compiling irrelevant
objects to counters. special case of creation planning. AI
Communications 29(3):435–467.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hu, Y., and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI), 918–923.
Hu, Y., and Levesque, H. 2009. Planning with loops: Some
new results. In Proceedings of the 1st Workshop on Gener-
alized Planning (GenPlan@ICAPS), 35–42.
Hu, Y., and Levesque, H. 2010. A correctness result for rea-
soning about one-dimensional planning problems. In Pro-
ceedings of the 12th International Conference on Knowl-
edge Representation and Reasoning (KR), 362–371.
Illanes, L., and McIlraith, S. A. 2017. Numeric planning
via abstraction and policy guided search. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI), 4338–4345.
Levesque, H. J. 2005. Planning with loops. In Proceed-
ings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), 509–515.
Manna, Z., and Waldinger, R. 1980. A deductive approach
to program synthesis. ACM Transactions on Programming
Languages and Systems 2(1):90–121.

Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved non-deterministic planning by exploiting state rele-
vance. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS), 172–180.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Riddle, P. J.; Barley, M. W.; Franco, S.; and Douglas, J.
2015. Automated transformation of PDDL representations.
In Proceedings of the 8th Symposium on Combinatorial
Search (SoCS), 214–215.
Riddle, P.; Douglas, J.; Barley, M.; and Franco, S. 2016. Im-
proving performance by reformulating PDDL into a bagged
representation. In Proceedings of the 8th Workshop on
Heuristic Search for Domain-independent Planning (HS-
DIP@ICAPS), 28–36.
Sagiv, M.; Reps, T.; and Wilhelm, R. 2002. Parametric shape
analysis via 3-valued logic. ACM Transactions on Program-
ming Languages and Systems 24(3):217–298.
Solar-Lezama, A. 2008. Program synthesis by sketching.
Ph.D. Dissertation, University of California, Berkeley.
Srivastava, S.; Zilberstein, S.; Immerman, N.; and Geffner,
H. 2011. Qualitative numeric planning. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence (AAAI),
1010–1016.
Srivastava, S.; Gulwani, S.; and Foster, J. S. 2010. From
program verification to program synthesis. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 313–326.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelli-
gence (AAAI), 991–997.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artificial Intelligence 175(2):615–647.
UPS. 2016. UPS fact sheet. https://www.pressroom.ups.
com/pressroom/ContentDetailsViewer.page?ConceptType=
FactSheets&id=1426321563187-193.

7618


