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A Novel Ensemble-Based Scoring and Search
Algorithm for Protein Redesign and Its Application

to Modify the Substrate Specificity of the Gramicidin
Synthetase A Phenylalanine Adenylation Enzyme
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ABSTRACT

Realization of novel molecular function requires the ability to alter molecular complex for-
mation. Enzymatic function can be altered by changing enzyme–substrate interactions via
modification of an enzyme’s active site. A redesigned enzyme may either perform a novel
reaction on its native substrates or its native reaction on novel substrates. A number of
computational approaches have been developed to address the combinatorial nature of the
protein redesign problem. These approaches typically search for the global minimum energy
conformation among an exponential number of protein conformations. We present a novel
algorithm for protein redesign, which combines a statistical mechanics–derived ensemble-
based approach to computing the binding constant with the speed and completeness of a
branch-and-bound pruning algorithm. In addition, we developed an efficient deterministic
approximation algorithm, capable of approximating our scoring function to arbitrary preci-
sion. In practice, the approximation algorithm decreases the execution time of the mutation
search by a factor of ten. To test our method, we examined the Phe-specific adenylation
domain of the nonribosomal peptide synthetase gramicidin synthetase A (GrsA-PheA). En-
semble scoring, using a rotameric approximation to the partition functions of the bound
and unbound states for GrsA-PheA, is first used to predict binding of the wildtype protein
and a previously described mutant (selective for leucine), and second, to switch the enzyme
specificity toward leucine, using two novel active site sequences computationally predicted
by searching through the space of possible active site mutations. The top scoring in silico
mutants were created in the wetlab and dissociation/binding constants were determined by
fluorescence quenching. These tested mutations exhibit the desired change in specificity from
Phe to Leu. Our ensemble-based algorithm, which flexibly models both protein and ligand
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using rotamer-based partition functions, has application in enzyme redesign, the prediction
of protein–ligand binding, and computer-aided drug design.

Key words: protein design, enzyme design, protein flexibility, protein–ligand binding, molecular
ensemble, nonribosomal peptide synthetase, fluorescence binding assay

Abbreviations used: DTT, dithiothreitol; GMEC, global minimum energy conformation; GrsA-
PheA, gramicidin synthetase A–phenylalanine adenylation domain; LB, luria broth; NRPS, non-
ribosomal peptide synthetase; PCR, polymerase chain reaction; PMSF, phenylmethanesulfonyl
fluoride; RMSD, root mean square distance; WT, wildtype.

1. INTRODUCTION

In a variety of fungi and parasites, nonribosomal peptide synthetase (NRPS) enzymes complement
the traditional ribosomal peptide synthesis pathway. NRPS enzymes produce peptide-like products via

the incorporation of both standard and nonstandard amino acid precursors. Unlike the ribosome, many
NRPS enzymes methylate or epimerize their amino acid substrates, join them with peptide or ester bonds,
and sometimes cyclize their final product. NRPS products include natural antibiotics (e.g., penicillin, van-
comycin), antifungals, antivirals, anticancer therapeutics, immunosuppressants, and siderophores. Enzymes
of the NRPS pathway have multiple domains with individual functions acting in an assembly-line fashion
(Fig. 1). It is believed that the substrate specificity of the NRPS enzymes is dictated primarily by the
“gatekeeper” adenylation (A) domain that binds and acylates the incoming amino acid, forming an amino-
acyl adenylate (Stachelhaus et al., 1999; Challis et al., 2000; Schwarzer et al., 2003). Recent evidence
also indicates that the condensation (C), thiolation (T), and epimerization (E) domains may carry some
specificity as well, albeit to a lesser extent (Belshaw et al., 1999; Weber et al., 2000; Ehmann et al.,
2000; Linne et al., 2001).

Enzyme redesign of NRPS enzymes offers the opportunity to reëngineer biosynthetic pathways, greatly
increasing the number and types of NRPS products (Fig. 2). Therefore, the interest in redesigning NRPS
enzymes is motivated by the long-range goal of reprogramming the enzymatic pathway to achieve combina-
torial biosynthesis, and the development of new libraries of antibiotics (Cane et al., 1998). We explore the
idea of reprogramming NRPS enzymes by introducing K∗, an ensemble-based protein redesign algorithm,
to analyze and redesign the phenylalanine adenylation domain of the NRPS enzyme gramicidin synthetase
A (GrsA-PheA).

1.1. Computational protein design

A variety of computational protein redesign efforts have recently been reported. Incorporation of molec-
ular flexibility into protein design is essential; every previous structure-based protein design algorithm has
included some notion of flexibility (Street and Mayo, 1999; Jin et al., 2003; Jaramillo et al., 2001; Hellinga
and Richards, 1991; Bolon and Mayo, 2001; Offredi et al., 2003; Looger et al., 2003; Keating et al.,
2001; Shifman and Mayo, 2002). Many protein design algorithms treat the peptide backbone as rigid

FIG. 1. Gramicidin S synthetase is composed of two NRPS proteins, GrsA (3 domains) and GrsB (13 domains).
Gramicidin S is produced in an assembly-line manner where two D-Phe-L-Pro-L-Val-L-Orn-L-Leu peptides are
joined and cyclized. (A: adenylation, T: thiolation (peptidyl carrier protein), E: epimerization, C: condensation,
TE: thioesterase)
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FIG. 2. Gramicidin redesign. The GrsA-PheA domain controls incorporation of the first amino acid in the synthesis
of the antibiotic gramicidin. (Left) The natural gramicidin construct is shown with the incorporated phenylalaninel. By
changing the substrate specificity of the GrsA-PheA domain to accept leucine, it may be possible to create a modified
gramicidin (right) where the phenylalanines have been replaced by leucine.

and model amino acid side-chain flexibility with a rotamer library containing a discrete set of side-chain
conformations (Lovell et al., 2000; Ponder and Richards, 1987).

Design algorithms have been based on the assumption that for a given protein sequence, folding and
binding can best be predicted by examining the single global minimum energy conformation (GMEC).
Unfortunately, protein design by searching for the GMEC using rotamers and a pairwise energy function on
a rigid peptide backbone has recently been shown to be NP-hard (Pierce and Winfree, 2002). As a result,
a number of heuristic (random sampling, neural network, genetic algorithm) GMEC-based approaches for
protein design have been reported (Street and Mayo, 1999; Jin et al., 2003; Jaramillo et al., 2001; Hellinga
and Richards, 1991; Marvin and Hellinga, 2001); however, the dominant algorithm for assisting in the
GMEC search has been dead-end elimination (DEE) (Desmet et al., 1992; Lasters and Desmet, 1993; Pierce
et al., 2000). Given a protein backbone, a set of allowable mutations, and a rotamer library, DEE employs
a number of sophisticated conformation pruning techniques to prune conformations that are provably not
part of the GMEC. Typically, DEE will eliminate the vast majority of mutation sequences; remaining
sequences can subsequently be scored and ranked. Growing evidence supports the hypothesis that protein–
ligand binding can involve a number of low-energy bound states (Decanniere et al., 2001; Raag and Poulos,
1991; Murthy et al., 1992; Wojtczak et al., 1996; Zhou et al., 2000; Montfort et al., 1990). Therefore, we
have developed a scoring method for protein–ligand redesign based on molecular ensembles. Molecular
ensembles have been successfully utilized in structure-based drug design: most commonly, molecular
docking is performed against each member of an ensemble or a unified ensemble model and an average or
best interaction energy between the protein and ligand may be retained (Claußen et al., 2001; Österberg
et al., 2002; Lilien et al., 2000; Bouzida et al., 1999; Knegtel et al., 1997; Carlson, 2002).

1.2. Previous NRPS redesign

NRPS enzyme redesign methods can be divided into two main techniques, domain-swapping and active
site modification through site-directed mutagenesis. Domain-swapping techniques do not require com-
putational analysis nor knowledge of molecular structure; NRPS enzymes are modified by swapping an
adenylation domain of an existing NRPS enzyme for an adenylation domain from a second, different NRPS
enzyme (carrying a different substrate specificity) (Stachelhaus et al., 1995; Schneider et al., 1998; Doekel
and Marahiel, 2000; Mootz et al., 2000). Results of domain-swapping experiments led to the hypothesis
that the disruption of native domain:domain interfaces vitiates the proper transfer of synthesis intermediates
thereby degrading catalytic efficiency (Linne et al., 2001). Emphasis on the importance of domain:domain
interactions and domain specificity has directed domain-swapping work to include simultaneous cloning
of A, C, and T domains, demonstrating increased yield (Doekel and Marahiel, 2000; Mootz et al., 2000).

The second method for NRPS redesign, active site modification through site-directed mutagenesis, uti-
lizes structural information of the GrsA-PheA enzyme (1AMU [Conti et al., 1997]). Sequence alignment
of GrsA-PheA with 160 other known adenylation domains supports the hypothesis that NRPS adenylation
domains, specific for different amino acid substrates, share a similar overall structure differing mainly in
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the composition of residues lining the active site (Stachelhaus et al., 1999; Eppelmann et al., 2002; Challis
et al., 2000). A “signature sequence” can be derived for each adenylation domain by extracting those
residues that align with the structurally determined substrate binding pocket of the GrsA-PheA crystal
structure. By abstracting away from the GrsA-PheA crystal structure, mutations are suggested for a given
amino acid substrate by sequence comparison alone. Using signature sequences, Stachelhaus et al. (1999)
mutated two adenylation domains: PheA, successfully switching the substrate specificity from Phe to Leu;
and a second adenylation domain that naturally accepts Asp to accept Asn. More recently, Eppelmann
et al. (2002) changed the Glu adenylation domain of surfactin synthetase A to accept Gln.

In summary, previous NRPS redesign methods include domain-swapping and site-directed mutagenesis
from active site signature sequences. Our method, active site manipulation by site-directed mutagenesis
from a computational mutation search utilizing ensemble docking, adds to the armamentarium of tech-
niques available for protein redesign and confers some significant advantages over existing NRPS redesign
methods. Signature sequence methods project active site information into a consensus sequence, thus losing
structural information. Because molecular structure is not explicitly considered during redesign, successful
redesign is more difficult if there are significant structural differences affecting the overall active site shape
between the A domains accepting the natural and target substrates. Our method builds mutations into the
high-resolution structure of the wildtype enzyme, thus mitigating potential problems arising from these
structural differences. In contrast to domain-swapping, our method is more likely to preserve the NRPS
enzyme’s native modular structure, thus maintaining crucial specific domain:domain interface regions. Fi-
nally, unlike either signature sequence or domain-swapping techniques, our method can propose mutations
for substrates for which no existing adenylation domain sequences are known.

When considering the use of molecular ensembles for protein design, a major challenge has been the
development of ensemble-based redesign algorithms that efficiently prune mutations and conformations.
In this paper, we introduce the K∗ method which generalizes Boltzmann-based scoring to ensembles and
applies the result to protein design. The following contributions are made in this work:

1. Introduction of the first ensemble-based protein redesign algorithm;
2. Development of ε-approximation algorithms for K∗ capable of pruning the vast majority of conforma-

tions from more computationally expensive consideration thereby reducing execution time and making
the mutation search computationally feasible;

3. The use of K∗ to reproduce known adenylation domain binding experiments;
4. The use of K∗ to predict novel mutation sequences capable of switching substrate specificity of GrsA-

PheA;
5. Confirmation of the K∗ method by the creation of predicted protein mutants in the wetlab and testing

of their specificity by fluorescence quenching binding assays.

2. METHODS

2.1. Ensemble scoring method (K∗)

Protein–ligand binding in a single mutation is modeled using the following K∗ equation:

K∗ = qPL

q
P
q
L

. (1)

K∗ is derived to be an approximation to the true association (binding) constant K
A

by expressing each
species’ chemical potential as a function of the species partition function q (Hill, 1956; McQuarrie, 1976)
and solving for the equilibrium condition (full details are provided in Appendix A). Unfortunately, it is
not currently possible to compute exact partition functions for complex molecular species. This would
require integrating an exact energy function over a molecule’s entire conformational space. We therefore
approximate these partition functions with the use of rotamerically-based conformational ensembles:

qPL =
∑
b∈B

exp(−Eb/RT ), q
P

=
∑
f∈F

exp(−Ef /RT ), q
L

=
∑
l∈L

exp(−El/RT ), (2)
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where B, F , and L represent rotamer-based ensembles for the bound protein–ligand complex (PL), the
free protein (P ), and the free ligand (L), respectively, Es is the energy of conformation s, R is the gas
constant, and T is the temperature in Kelvin. The accuracy with which K∗ approximates K

A
is proportional

to the accuracy of the partition function approximation used.

2.2. Mutation search

When applying K∗ to a protein–ligand system, a number of choices must be made with respect to
ensemble generation and single-structure scoring. Single-structure scoring is the method by which each
individual member of an ensemble is scored. These individual scores are then combined using Equations (1)
and (2) to compute an ensemble score. The choices made in ensemble scoring should strike a balance
between fidelity to the underlying physical biochemistry, and computational feasibility even in the inner
loop of a combinatorially expensive search. A more detailed single structure scoring model takes longer
to evaluate and typically cannot be used with large or complex molecules. We present one implementation
of the K∗ scoring function; however, alternate schemes for both ensemble generation and single-structure
scoring can be explored and utilized within theK∗ framework. First, in this section, we present a brute-force
algorithm that does not utilize filters on mutation space nor pruning of conformation space. The algorithm
is then extended to utilize both mutation space filters and conformation space pruning in Section 2.3. The
specific application of K∗ to redesign GrsA-PheA is described in Section 3.

In the general case, for each allowable active site sequence, K∗ is computed using the following three
steps.

Step 1: Ensemble generation. Molecular ensembles are generated by fixing the protein backbone and
using the Lovell et al. (2000) rotamer library to vary side-chain conformation. Each flexibly modeled
residue is allowed to sample all allowable rotamers. Steric clash is determined by computing the distance
that two atoms’ amber van der Waals’ (vdW) spheres penetrate each other. Conformations containing any
pair of atoms with more than 1.5 Å of steric clash are discarded. Finally, if the volume of the active
site is large relative to the size of the ligand, multiple translations of the ligand in the active site should
be generated and included in the bound ensemble. Because the ligand binding site in GrsA-PheA tightly
fits the amino acid ligand, when modeling GrsA-PheA a maximum translation of 1.2 Å (and a maximum
translation step size of 0.1 Å) was used. To model other larger molecular systems, we utilized a larger
three-dimensional grid placed over the active site to generate additional ligand translations.

Step 2: Ensemble scoring (single-structure scoring). In the brute-force algorithm, all conformations that
pass step 1 are energy-minimized using our implementation of the amber energy function (containing
electrostatic, vdW, and dihedral terms) (Weiner et al., 1984; Cornell et al., 1995). In our model, hydrogen
atoms are added to all residues by the leap module of the amber distribution and are used in comput-
ing the electrostatic but not vdW energies. We perform a constrained minimization (analogous to voxel
minimization [Tucker-Kellogg, 2002; Rienstra et al., 2002]) on each rotameric conformation where side
chain dihedrals on flexible residues (including the ligand when present) may move by up to ±9◦ and, for
the bound states, the entire ligand may rotate and translate in the active site. This allows our algorithm to
sample a larger region of conformation space while not allowing one rotamer to minimize into another.

Step 3: K∗ scoring. The three partition functions qPL , q
P

, and q
L

are computed separately. The energy
minimized scores from Step 2 are used to compute each partition function which is then combined to
compute K∗ (Equation 1).

After computing K∗ for each mutation, the top mutations (those with the largest K∗) are examined
graphically and selected for testing in the wetlab. It is worth noting that although the amber scoring
function we use for single structure scoring contains only enthalpic terms, the K∗ method of ensemble
scoring encompasses conformational entropy through use of the partition function over ligand and side
chain conformations.

2.3. Efficient algorithms for mutation search

Because protein redesign is NP-Hard (Pierce and Winfree, 2002), there is most likely no way, in the
worst case, to avoid having to potentially examine an exponential number of conformations. That is to
say, the run time of a protein design algorithm that returns the optimal mutation sequence (under a given
metric) is likely to be inherently exponential. In contrast, a random sampling mutation search algorithm
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can run in subexponential time, yet the mutation sequence returned is not guaranteed to be optimal. The
combinatorial nature of protein redesign is exacerbated when utilizing an ensemble-based scoring function
because multiple low-energy states must be considered for each mutation sequence. Therefore, in designing
an ensemble-based mutation search algorithm it is necessary to prune unlikely conformations and mutations
and also to reduce the runtime constant. Consequently, our mutation search algorithm utilizes the following
methods. First, volume and steric filters prune a combinatorial number of conformations from consideration.
Thus, analogous to DEE, our pruning techniques eliminate the majority of conformations early in the
mutation search. Second, our K∗ approximation algorithm quickly discards the majority of remaining
conformations by placing provable bounds on each conformation’s contribution to the partition function;
only those conformations that significantly contribute to the partition function are further considered. This
algorithm reduces the average amount of time spent examining each conformation and is essential in
practice; without such optimizations the ensemble-based mutation search would not be possible.

Sequence-space filters. A residue type filter restricts the mutation search to include only a subset of
amino acids based on compatibility with the target substrate. A volume filter removes mutations that
significantly over- or underpack the substrate-bound active site relative to the wildtype.

Deterministic approximation algorithm. In a Boltzmann distribution, conformations with large energies
are not likely to be assumed and contribute only a vanishingly small amount to the partition function. We
therefore prune conformations from consideration (and hence minimization) when we know that they will
contribute only a small percentage to the total partition function. In Section 2.3.2, we show that the true
partition function can be provably approximated to arbitrary precision.

2.3.1. Conformation generation and the steric filter. Active site rotameric conformations are generated
by traversing a conformation tree in a depth-first search order. In a conformation tree (Fig. 3), the rotamers
of flexible residue i are represented by the branches at depth i. For example, in Fig. 3, residue A has four
rotamers, residue B has two rotamers, and residue C has three rotamers. Internal nodes of a conformation
tree represent partially assigned conformations. For example, in Fig. 3, node e represents the partially
assigned conformation where residue A has assumed rotamer 2 and residue B has assumed rotamer 1;
no rotamer has yet been assigned for residue C. Nodes of the conformation tree are visited in a depth-
first search order. As each node is visited, conformations with more than 1.5 Å of preminimization steric
overlap are not further considered, thereby pruning a branch of the conformation tree. For example, when
generating the children of node b, rotamer 2 is not assigned to residue B since it causes steric clash. That
branch of the search tree is pruned and not considered further. Steric clash identified at higher levels of the
conformation tree prunes more conformations than the identification of steric clash at lower nodes of the
conformation tree. Pruning at depth i eliminates O(cn−i ) conformations, where c is the average number
of rotamers per amino acid type and n is the total number of flexible residues.

2.3.2. Intramutation pruning. We now derive the energetic-based pruning method and quantify the
total error accrued by ignoring pruned conformations when computing a single partition function. Because

FIG. 3. An example conformation tree. The rotamers of flexible residue i are represented by the branches at depth i.
Internal nodes of a conformation tree represent partially-assigned conformations. Red X’s represent nodes of the
conformation tree where steric clash has been identified among a partially assigned conformation. All children of X
nodes are pruned and not considered.
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this technique is applied during the computation of a single partition function for a single mutation, it
is called intra-mutation pruning. We show that any desired approximation accuracy to the true partition
function can be guaranteed.

Assume that a partition function is to be computed over n sterically allowed conformations. Let
Ck = {c1, c2, . . . , ck} be the subset containing the first k conformations such that Cn contains all the
conformations. Let qk be the partial partition function computed by evaluating the first k conformations,

qk =
∑
c∈Ck

exp(−Ec/RT ).

Let q∗
k be an approximation to qk determined by examining a subset of states Sk , such that Sk ⊆ Ck and

q∗
k ≤ qk ,

q∗
k =

∑
s∈Sk

exp(−Es/RT ).

If Sk contains most of the low energy conformations of Ck , then q∗
k will represent a good approximation

to qk . Let pk be the partition function of the pruned residues (Ck − Sk) equal to the difference qk − q∗
k

such that

pk =
∑

s∈(Ck−Sk)
exp(−Es/RT ).

One method of ensuring that q∗
n is a good approximation to qn is to maintain an invariant throughout the

computation requiring that q∗
k be a good approximation to qk . Therefore, we maintain that at any point k,

q∗
k must be a good approximation to qk , that is,

q∗
k ≥ (1 − ε)qk, ∀k ≤ n. (3)

Here, ε is the desired approximation constant (ε < 1). When Equation (3) holds, we say that q∗
k is an

ε-approximation to qk . We can maintain Equation (3) by ensuring that pk ≤ qkε. Since we know that
q∗
k ≤ qk , we can also maintain Equation (3) and therefore that q∗

k remains an ε-approximation to qk by
ensuring that

pk ≤ q∗
k ε. (4)

To determine a pruning criterion, we assume that we have already considered k conformations and that Sk
contains the subset of fully evaluated conformations. To prune conformation ck+1, we must first guarantee
that after pruning ck+1, the value q∗

k+1 is an ε-approximation to qk+1. We know that

qk+1 = q∗
k + pk + exp(−Eck+1/RT ).

If we prune ck+1, then

pk+1 = pk + exp(−Eck+1/RT ), (5)

q∗
k+1 = q∗

k . (6)

To maintain the invariant, we need to ensure pk+1 ≤ q∗
k+1ε, which can be rewritten using Equations (5)

and (6) as

pk + exp(−Eck+1/RT ) ≤ q∗
k ε. (7)

Solving Equation (7) for Eck+1 , we get that

Eck+1 ≥ −RT ln
(
q∗
k ε − pk

)
. (8)
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Therefore, if the energy of conformation ck+1 satisfies Equation (8), then we can prune conformation
ck+1 while maintaining q∗

k+1 ≥ (1 − ε)qk+1 (that is, q∗
k+1 is an ε-approximation to qk+1). Of course,

the purpose of pruning is to avoid the computationally expensive energy minimization required to obtain
Eck+1 . In practice, we use a pairwise energy matrix to compute a lower bound on Eck+1 (full details are
in Appendix D) and compare this bound to Equation (8). Because we don’t compute Eck+1 , we cannot
maintain an exact value for pk . Therefore, the lower bounds on Eck+1 are used to compute p∗

k , an upper
bound on pk , namely

pk ≤ p∗
k =

∑
s∈(Ck−Sk)

exp(−B(s)/RT ),

where B(s) returns a lower bound on the energy of conformation s. Because −RT ln
(
q∗
k ε − p∗

k

) ≥
−RT ln

(
q∗
k ε − pk

)
, the approximation p∗

k can be used to determine the practical pruning criteria; that is,
conformation ck+1 can be pruned if

B(ck+1) ≥ −RT ln
(
q∗
k ε − p∗

k

)
. (9)

This leads to the following lemma:

Lemma 1. If Equation (9) is satisfied by conformation ck+1, then conformation ck+1 can be pruned
and q∗

k+1 is guaranteed to be an ε-approximation to qk+1.

Maintaining the invariant that after considering k conformations q∗
k is an ε-approximation to qk leads

to the following lemma:

Lemma 2. If q∗
k is an ε-approximation to qk for all k (0 < k ≤ n), then by induction, at the end of

the computation, q∗
n will be an ε-approximation to qn.

The intra-mutation pruning algorithm is shown in Fig. 4.
When using K∗ to perform a mutation search, we can bootstrap the pruning condition for improved

efficiency (by caching partition functions, we can exploit K∗ bounds from other mutations in the same
search). Our search algorithm has the desirable property that provably accurate ε-approximations are
computed for top-ranking mutations, while the bounds we can prove on the quickly-computed K∗ values
for lower-ranked mutations do not enjoy the same degree of accuracy. Our algorithm requires an ε-approxi-
mation only for those mutations with K∗ ≥ γ max

i≤m K
∗
i , where K∗

i is the K∗ value of the ith mutation, m

is the total number of mutations, and γ (0 < γ ≤ 1.0) is a user-specified constant defining a range of
K∗ values that must be computed accurately. Since the value of the largest (best) K∗ is not known during

FIG. 4. Intramutation pruning. Here q∗ is the running approximation to the partition function, and p∗ is an upper
bound on the partition function of the pruned conformations. The function B(·) computes a lower energy bound for the
given conformation. The function ComputeMinEnergy(·) returns the energy of the energy-minimized conformation as
computed using steepest-descent minimization and our implementation of the amber energy function (as described in
Step 2 of Section 2.2). At the end, q∗ represents an ε-approximation to the true partition function q such that q∗ ≥ (1−ε)q.
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the mutation search, we use K∗
o , the largest K∗ value encountered so far. Similarly to Equation (9), after

examining k of n total conformations of a partition function qPL , evaluation of conformation ck+1 can be
skipped if

B(ck+1) ≥ −RT ln
(
ψk − p∗

k

)
, (10)

where ψk = max
(
εK∗

o qLγ qP , q
∗
k ε

)
. The full derivation of Equation (10) is in Appendix C.

In summary, four levels of approximation are used in computing K∗ scores. First, a rotamer library
(Lovell et al., 2000) is used to model side chain conformations. Second, prior to computing partition
function values, sterically disallowed rotamer-based conformations are combinatorially pruned from con-
sideration (Section 2.3.1). Third, intra- and inter-mutation pruning methods (Section 2.3.2 and Appendix C)
are used to skip evaluation of conformations not required to compute ε-approximations to the partition
function and K∗ values. Fourth, in computing these partition functions and K∗ values, our algorithm
starts with discrete rotamers and then performs bounded minimization (Step 2, Section 2.2). The third
and fourth of these approximation techniques provide provable bounds on the accuracy of the computed
partition function and K∗ values. All four of these methods are used in performing the mutation search
of Section 3. Our implementation includes a multithreaded distributed parallel application for K∗-based
mutation search which allows the mutation search to utilize any Unix-based machine with access to our
filesystem. Approximately 18 processors were used in the Leu redesign of Section 3.4.

3. RESULTS AND DISCUSSION

3.1. Structural model

Our structural model employs the previously solved structure of GrsA-PheA (1AMU) (Conti et al.,
1997) and consists of the 9 active site residues (D235, A236, W239, T278, I299, A301, A322, I330, C331)
(Fig. 5), the 30 residues with at least one atom within 8 Å of the active site (termed the steric shell), the
amino acid substrate, and the AMP cofactor. The steric shell allows us to compute the interaction energy
of the active site residues with neighboring regions of the protein and constrains the active site residues
from assuming conformations that would sterically clash with the body of the PheA protein.

3.2. Comparison to wildtype PheA

We performed a series of experiments to confirm the proper implementation of the steric filter, the
rotamer library, the amber energy function, and the minimization algorithm. The first test was designed
to confirm that we could find an accepted (crystallographically confirmed) conformation for Phe in the
PheA active site. The bound partition function qPL was computed for Phe in the GrsA-PheA wildtype
(WT) protein. The energy calculated for the best minimized rotamer structure (i.e., the lowest computed
energy) and that calculated for the crystal structure are within 5% of each other and have a non-hydrogen
atom RMSD of 0.66 Å (Fig. 5A). In the bound molecular ensemble, approximately 39 conformations of
the PheA:Phe complex have energies within 5% of the minimum (Fig. 5B). This observation supports the
hypothesis that multiple structures have energies contributing to the weighted ensemble. This test confirmed
that we were able to generate structures compatible with the X-ray structure and therefore demonstrated
the feasibility of both the rotamer search strategy with minimization and the scoring scheme.

3.3. T278M/A301G double mutant

To further test our model, we simulated the biochemical activity assays of L-Phe and L-Leu against
wildtype PheA and the T278M/A301G double mutant (Stachelhaus et al., 1999). The T278M/A301G
double mutant was designed by signature sequence homology modeling by Stachelhaus et al. (1999) to be
similar to a known Leu adenylation domain. The K∗ scores were computed for each substrate in each active
site and compared with activity assays performed by Stachelhaus et al. (1999). Because the experimentally
measured solvation energy of Leu and Phe are similar (2.3 vs. 2.4 kcal/mol) (Eisenberg and McLachlan,
1984; Fauchère and Pliška, 1983), in these experiments we chose not to determine q

L
computationally

but rather treat the q
L

values of Leu and Phe as equivalent. Stachelhaus et al. normalized the activity
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FIG. 5. Comparison of K∗-predicted and crystal structures of GrsA-PheA. (A) The lowest-energy ensemble mem-
ber of Phe in WT GrsA-PheA is shown with the crystal structure (RMSD: 0.66 Å). Active site residues are yellow
(predicted) and blue (crystal), Phe substrate is ball and stick, AMP is green, and residues immediately surrounding
the active site (the steric shell) are grey wireframe. The energy-minimized rotamer-based prediction accurately re-
produces the crystallographic conformation. The main structural difference occurs in 239W where a small difference
in the (Cα-Cβ -Cγ ) bond angle (118.3 [resp., 115.1] degrees in the crystal structure [resp., prediction]) prevents the
rotamer-based conformation from more closely matching the crystallographic conformation. (B) Conformational en-
ergy (kcal/mol) vs. RMSD for conformations in the K∗ generated ensemble for Phe in wildtype GrsA-PheA. RMSDs
are computed between each ensemble conformation, and the crystal structure 1AMU (Conti et al., 1997) using all non-
hydrogen atoms. Low-energy conformations have a lower RMSD than high energy conformations, and conformations
with low RMSDs have lower energies than conformations with larger RMSDs.

FIG. 6. The top two K∗-predicted mutations and the mutation frequency in the 40 top-ranking mutations. Shown are
the lowest energy ensemble members of the bound partition functions for (A) A301G/I330W and (B) A301G/I330F.
Residue 301G sterically allows for the Leu Cδ atoms while residues 330W and 330F both stack on residue 239W and
serve to fill a void at the bottom of the active site created by the difference in size between Phe and Leu. Mutated
residues are shown in orange. (C) The fraction of the top 40 K∗-ranked sequences involving the specified residues.
If mutations were randomly distributed, one would expect that each residue would mutate 2/9 (22.2%) of the time
(indicated by the vertical black line). Therefore, residues 235, 236, 330, and 331 tend to assume the wildtype amino
acid in the K∗-predicted distribution for the Leu-binding mutation search.
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Table 1. Conformational Pruninga

Conformations Pruning Pruning
remaining factor (%) type

Initial 6.8 × 108 — —
Volume filter 1.98 × 108 3.43 (70.9) C
Steric filter 8.22 × 105 240.86 (99.6) C
Energy filter 7.99 × 104 10.28 (90.3) CF

aThe initial number of conformations for the GrsA-PheA 2-residue Leu mutation search
is shown with the number of conformations remaining after the application of volume,
steric, and energy (Equation 10) pruning. The pruning factor represents the ratio of the
number of conformations present before and after the given pruning stage. The pruning-
% (in parentheses) represents the percentage of remaining conformations eliminated by
the given pruning stage. The combined pruning factor of all filters is 8,510. The pruning
type column indicates if the pruning represents a combinatorial (C) or a constant factor
(CF) speedup.

of each protein such that the substrate with the most activity was assigned a specificity of 100%. The
wildtype enzyme has a normalized specificity of 100% for Phe and approximately 10% for Leu while the
T278M/A301G double mutant has a normalized specificity of approximately 40% for Phe and 100% for
Leu (Stachelhaus et al., 1999). Our normalized K∗ results closely agree with these specificity scores. For
the wildtype enzyme, PheA has a normalized K∗ for Phe of 100% and for Leu of 6%. The double mutant
enzyme has a K∗ of 10% for Phe and 100% for Leu. Although K∗ is a binding constant approximation,
its results qualitatively agree with the activity assays of Stachelhaus et al.

3.4. Redesign for Leu

A K∗ mutation search was performed to redesign GrsA-PheA to bind and adenylate Leu instead of
Phe. The 9 active site residues, 30 active site neighboring residues, substrate, and AMP were modeled as
described above. We performed a 2-residue mutation search, where any two of the nine active site residues
were allowed to mutate to any of the hydrophobic residues (GAVLIFYWM) (2,916 possible mutations,
approximately 6.8×108 conformations). Each mutation was checked against the volume filter. Active sites
that were over- or underpacked relative to Phe in the PheA wildtype by more than 30 Å3 were eliminated.
Altogether 1,011 mutations (35% of the total), containing 1.98 × 108 conformations, passed the volume
filter and were fully evaluated. Of the 822,061 conformations that passed the steric pruning step, 742,116
(90.3%) were pruned based on minimum energy bounds (Equation 10) leaving only 79,945 conformations
of the original 6.8 × 108 that were then energy minimized and scored (Table 1). The 2-residue mutation
search took less than one day on a cluster of 18 1.6 GHz Athlon processors. Without energetic pruning,
approximately 10 times as many conformations would require minimization taking approximately 10 times
longer to execute. Computationally, for comparison, a three-point mutation search has been run in 10 days;
consequently, due to the computation required in minimizing each rotameric conformation, execution
without pruning is impractical. In practice, the accuracy of the computed solution is significantly higher
than that guaranteed by the approximation. When a 3% approximation (accuracy = 97%) is requested, the
accuracy achieved is over 99% which suggests that we may relax the pruning criteria and still maintain an
excellent approximation.

The two mutation sequences with the best K∗ scores are A301G/I330W and A301G/I330F: these novel
mutations are unknown in nature and have never been tested before. The lowest energy predicted confor-
mations of the bound ensemble for the best two mutation sequences are shown in Fig. 6. The first mutation
in both sequences, A301G, sterically allows for the difference in position of the Cδ atoms between Phe and
Leu. Residue 301G appears in 69% of the top 40 K∗-ranked mutations1 (Fig. 6C) and is also present in

1The histogram of amino acid type usage in Fig. 6C is first-order and does not currently examine correlations among
mutation pairs. It would be interesting to extend our analysis to identify residues which tend to mutate together and
amino acid type pairs which are more common for a particular mutation search. This information could be helpful in
deciding which mutation sequences to create and clone in the wetlab.
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Table 2. Dissociation Constantsa and Standard Errors
(in Parentheses) Measured by Fluorospectrophotometry for
Amino Acid Binding to GrsA-PheA and the Novel Mutants

301G/330W and 301G/330F

Dissociation constant (µM) KD

Substrate WT 301G/330W 301G/330F

L-Phe 26 (2.6) 94 (17.2) 53 (4.9)
L-Leu 50 (11.6) 45 (9.5) 30 (2.4)

aA lower dissociation constant is associated with tighter binding.

FIG. 7. Change in fluorescence vs. Leu concentration for 301G/330F. (Inset) Reciprocal plot of the fluorescence
quenching data and the linear regression (correlation coefficient of 0.977) showing a dissociation constant of 30 µM.
Dissociation constants and standard errors were computed using SPSS Rel. 11.0.2 (SPSS Inc., Chicago, IL).

all 19 known native Leu adenylation domains (Challis et al., 2000). The second mutation (I330W, I330F)
fills the bottom of the substrate binding pocket accounting for the difference in size between Phe and Leu.
Both mutations I330W and I330F form a staggered stacked ring structure (Samanta et al., 1999) with the
existing residue 239W (Fig. 6). The previously-reported T278M/A301G mutant (Stachelhaus et al., 1999)
is ranked 12th out of 2,916 by K∗, thus demonstrating that a known Leu binding mutation is ranked highly
in our mutation search.

The GrsA-PheA gene was cloned into the QE60 vector using PCR. The E. coli M15 cell lines were
transformed with the constructed plasmid. These genes where then modified to incorporate the two desired
mutations, 301G/330W and 301G/330F. Complete expression and purification details are in Appendix E.
For both mutations, the presence of Trp239 in the active site allowed us to determine the dissociation con-
stants for substrate binding (K

D
) by measuring the change in fluorescence of Trp at 340 nm after titrating

substrate and exciting at 280 nm. The dissociation constant K
D

is inversely proportional to the binding con-
stant K

A
= 1/K

D
. Hence, a smaller K

D
is associated with tighter binding. Both mutations clearly exhibit

stronger binding for Leu than for Phe (Table 2 and Fig. 7), and the K
D

measured for Leu in both redesigned
proteins is approximately half that for Phe, strongly demonstrating the success of the protein redesign.

4. COMPARISON TO GMEC SEARCH

For comparison, we explored whether the mutation sequences suggested by the K∗ mutation search
were indeed different from those that would have been found using a GMEC type search. We therefore
compared the K∗-based mutation sequence ranking to two non–ensemble-based scoring techniques. The
first alternative mutation scoring method scores each mutation sequence by the lowest minimum energy
bound conformation (among all allowable rotameric conformations for the given mutation sequence). We
refer to this brute-force approach as the minimum energy (ME) technique. The second alternative scoring
method simulates the rankings that would be returned by a DEE-type search. This method consists of two
stages. The first stage is an initial pruning step based on the lowest-energy bound rotameric conformation
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(no energy minimization is performed). In the second stage, a ranking is computed for each remaining
mutation based on an energy-minimized binding energy (Ebound − Eunbound). We therefore refer to this
method as the the minimized binding energy (MBE) technique. In computing the MBE ranking, the top
10% scoring mutations from the first stage are scored in stage two. The rankings produced by this method
therefore approximate those of a DEE-type search in that the vast majority of mutation sequences are
pruned in the DEE stage based on the lowest energy bound rotameric conformation, and unpruned mutations
are subsequently scored using a more sophisticated method. To compare the mutation sequence scoring
technique rather than the energy function, both the ME and MBE techniques use the same implementation
of the amber empirical energy function and steepest descent energy minimization used by K∗.

The three scoring methods were applied to all 1,011 2-residue mutation sequences that passed the volume
filter during Leu redesign. Of the top 40 K∗-ranked mutations, only two (5%) appear among the top 40 ME-
ranked mutations, and only seven (17.5%) appear among the top 100 ME-ranked mutations. Conversely,
of the top 40 ME-ranked mutations, only two (5%) appear among the top 40 K∗-ranked mutations, and
only eight (20%) appear among the top 100 K∗-ranked mutations. When compared to the MBE method, of
the top 40 K∗-ranked mutations only 10 (25%) appeared in either the top 40 or the top 100 MBE-ranked
mutations. Conversely, of the top 40 MBE-ranked mutations, 10 (25%) appear among the top 40 K∗-ranked
mutations and 23 (57.5%) appear among the top 100 K∗-ranked mutations. Perhaps most interesting is
the result that neither of the top two K∗-ranked mutations (A301G/I330W and A301G/I330F) were found
among the top 100 ME- or MBE-ranked mutations. Furthermore, the previously reported (T278M/A301G)
Leu binding mutation (Stachelhaus et al., 1999) is ranked 80th by the ME method, 3rd by the MBE
method, and 12th by the K∗ method.

Most of the top K∗-, ME-, and MBE-ranked mutations remain biologically untested, thus precluding
an exhaustive comparison of the mutations predicted by the three scoring techniques; however, we can
conclude that the top mutation sequences returned by K∗ are different from those returned by either ME
or MBE. The tested top K∗ mutations, shown in this paper to have Leu binding specificity (by wetlab
experiments), provide evidence that the K∗ rankings provide an additional and effective method for ranking
mutation sequences.

5. CONCLUSIONS

TheK∗ ensemble scoring method presented here was successfully applied to redesign the Phe adenylation
domain of gramicidin synthetase A. This represents the first use of an ensemble-based scoring function
for enzyme redesign. Despite the inherently exponential nature of ensemble-based scoring, a deterministic
approximation algorithm for computing each partition function enables sufficient pruning to make the
search feasible. The redesigned enzymes demonstrate a specificity switch from Phe to Leu in binding
affinity, and we are now pursuing enzyme activity assays to determine the rate of amino-acyl adenylate
formation for the designed proteins. Our ensemble-based mutation search algorithm represents a novel and
effective alternative to both domain swapping and the use of signature sequences for NRPS adenylation
domain modification.

Many previous modeling algorithms have used biophysically motivated scoring functions to rank results
(i.e., LUDI score [Böhm, 1994], DOCK score [Kuntz et al., 1982; Lorber and Shoichet, 1998]). Although
based on biophysical phenomenon, these scores often do not provide accurate absolute binding information
but rather are useful in predicting relative binding. The K∗ scoring method represents a similar type of
scoring function. At present, K∗ can best provide relative binding to rank mutations for a given ligand. In
the future, we hope to enhance K∗ to provide more information on absolute binding.

While GMEC-based approaches remain the dominant algorithm for protein design because of their
ability to handle the design of large proteins, we propose that, when active site flexibility and multiple
binding modes must be considered for the redesign of a moderate-sized system, K∗ represents an accurate
and feasible approach to ensemble-based redesign. The ease with which the K∗-based mutation search
algorithm can be parallelized allows for the utilization of additional hardware resources for larger enzyme
redesigns. We have recently scaled the K∗-based mutation search to perform a 3-residue mutation search
using over one hundred processors (data not shown) to switch specificity towards Val and Tyr. In this paper,
we demonstrate K∗ as a stand-alone algorithm; however, in larger systems, DEE can be used to reduce



ENSEMBLE-BASED PROTEIN REDESIGN 753

the exponential number of mutation sequences and conformations prior to K∗ scoring. In this manner, K∗
could be used to efficiently rank those mutation sequences that survive DEE pruning, leading to a DEE–K∗
hybrid search. Enhancements to our pruning methods should increase both the fraction of sequence space
searched during protein design and the size of active site for which K∗ is feasible.

It would be interesting to extend our algorithm to create “sloppy” adenylation domains capable of adeny-
lating several types of amino acids thereby facilitating combinatorial biosynthesis. Such enzymes could,
potentially, play a role in drug synthesis analogous to “generic operations” in computer science. Modified
synthesis pathways will create multiple final synthesis products, each demonstrating slight variations on
the designed product (Cane et al., 1998). Such biosynthetic combinatorial diversity should prove useful
during the lead-discovery phase of pharmaceutical development.

APPENDIX

In Appendix A, K∗ is derived from first principles by examining the sum of chemical potentials at
chemical equilibrium. Details of our structural model are provided in Appendix B. Appendix C presents
the derivation of intermutation pruning (Equation 10). A description of how a bound is computed on a
conformation’s minimum energy is presented in Appendix D. Finally, in Appendix E we provide details
on the cloning, mutation, expression, and purification of our novel mutant proteins as well as details of
the fluorescence quenching experiments.

A. Detailed derivation of K∗

Function K∗ represents a biophysically motivated scoring function over molecular ensembles. By using
the Boltzmann probability distribution, K∗ satisfies the Ergodic hypothesis and can be proved to approxi-
mate the true association (binding) constant K

A
. If K∗ is computed using exact partition functions, then K∗

will equal K
A
. In practice, we sample conformation space, replacing the continuous integral with a discrete

summation, and use a molecular mechanics scoring function to compute the energy of each conformation.
Hence, our algorithm represents an approximation to the true association (binding) constant.

We describe K∗ for the protein–ligand binding reaction P + L � PL, where P represents the protein
and L can represent either a small molecule in protein–ligand binding or a complete protein in the case
of protein–protein binding. Our scoring method represents an approximation to the association constant,
K
A
, by

K∗ =

∑
b∈B

exp(−Eb/RT )
∑
l∈L

exp(−El/RT )
∑
f∈F

exp(−Ef /RT )
, (11)

where B is the set of bound protein states, F is the set of unbound (free) protein states, L is the set of
unbound ligand states, Es is the energy of conformation s, R is the gas constant, and T is the temperature
in Kelvin. We will now motivate this equation and describe our physically derived approximation. We first
note that for the enzyme/ligand system the true association (binding) constant is defined as

K
A

= [PL]
[P ][L] .

It is known in statistical mechanics (Hill, 1956; McQuarrie, 1976) that at chemical equilibrium the sum of
the chemical potentials, µ, is equal to zero. In our ligand binding example,

µ
P

+ µ
L

− µPL = 0 (12)

where µ
P

, µ
L
, and µPL are the chemical potentials for the free protein, free ligand, and protein–ligand

complex respectively. The chemical potential, µ
J
, for a species J of indistinguishable particles is

µ
J

= −kT ln

(
q
J
(V , T )

N
J

)
, (13)
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where k is Boltzmann’s constant and q
J
(V , T ) is the partition function for the N

J
molecules of species J

at constant volume V and temperature T . The partition function includes all allowable states of a system.
By substituting the chemical potentials Equation (13) into the equilibrium condition Equation (12), we
obtain the result that at equilibrium

qPL (V , T )

q
P
(V, T )q

L
(V, T )

= NPL

N
P
N
L

= K
A
. (14)

Thus, the association constant K
A

is the quotient of the individual species partition functions. Unfortunately,
it is not currently possible to compute exact partition functions for a complex molecular species. This would
require integrating an exact energy function over a molecule’s entire conformational space. We therefore
approximate these partition functions with the use of rotamerically based conformational ensembles. The
partition function is approximated by our rotamerically based conformations as:

qPL =
∑
b∈B

exp(−Eb/RT ), q
P

=
∑
f∈F

exp(−Ef /RT ), q
L

=
∑
l∈L

exp(−El/RT ), (15)

where B, F , and L represent our rotamer-based ensembles for the bound protein–ligand complex, the free
protein, and the free ligand conformations, respectively. When combined, this gives the binding constant
approximation K∗ in Equation (11).

The accuracy with which K∗ approximates K
A

is proportional to the accuracy of the partition function
approximation used. There are two components to an ensemble-based approximation to the partition func-
tion: the set of conformations used in the ensemble and the method used to score each conformation. While
a molecular ensemble can be generated by multiple techniques (rotamers, multiple NMR structures, mul-
tiple crystal structures, molecular dynamics) (Philippopoulos and Lim, 1999; Lovell et al., 2000; Knegtel
et al., 1997), it is important that the ensemble sample all appropriate regions of conformation space. For
example, an ensemble of structures generated from NMR experiments on an apo protein may not sample
regions of protein conformation space that are compatible with ligand binding. Rotameric-based ensem-
bles have the potential to sample this space more evenly. When ensembles containing a large number of
conformations are used, it is important to choose an energy function that can be computed efficiently.

B. Details of the structural model

Our model consists of a portion of the GrsA-PheA protein (pdb: 1AMU [Conti et al., 1997]) including
the active site and a shell of surrounding residues (termed the steric shell). The residues of the active site
modeled as flexible using rotamers and subject to energy minimization include 235D, 236A, 239W, 278T,
299I, 301A, 322A, 330I, and 331C. The steric shell was selected to include all residues not modeled as
flexible and that contain at least one atom within 8 Å of the active site. The steric shell residues include
186Y, 188I, 190T, 210L, 213F, 214F, 230A, 234F, 237S, 238V, 240E, 243M, 279L, 300T, 302G, 303S,
320I, 321N, 323Y, 324G, 325P, 326T, 327E, 328T, 329T, 332A, 333T, 334T, 515N, and 517K. In addition
to the active site flexible and steric shell residues, the model also includes the substrate and AMP.

Flexible residues are represented by rotamers from the Lovell et al. rotamer library (Lovell et al., 2000).
Each rotameric based conformation in B, F , and L is minimized by steepest descent minimization using
the amber energy function (electrostatic, vdW, and dihedral energy terms) (Weiner et al., 1984; Cornell
et al., 1995) and is then combined using Equations (11) and (15) above.

C. Detailed derivation of intermutation pruning

In Section 2.3.2, we described conditions under which a conformation could be pruned when computing
a single partition function for a single mutation. When performing a mutation search, we can bootstrap
the pruning condition for improved efficiency. As in Section 2.3.2, pruned conformations are not energy-
minimized, thereby saving time in the overall mutation search. We will show how, in a mutation search,
the ε-approximation pruning conditions derived below make use of the partition functions previously
computed for other, different mutation sequences evaluated earlier in that search. Therefore, we call this
pruning intermutation pruning. The intuition is that we assume a lower bound on the partition function
q∗
n that allows us to prune more conformations earlier in the search. Intermutation pruning can only be
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applied during the computation of a bound partition function, qPL ; the unbound partition function q
P

must
be computed using the intramutation pruning method of Section 2.3.2.

During a mutation search, our primary goal is to compute a provably accurate ε-approximation for the
top-ranking mutations while quickly computing K∗ values for lower-ranked mutations that do not require
the same degree of accuracy. As each mutation is examined in the mutation search, it suffices to compute an
ε-approximation for only those mutation sequences with K∗ ≥ γ max

i≤m K
∗
i , where K∗

i is the K∗ value of the

ith mutation, m is the total number of mutations, and γ (0 < γ ≤ 1.0) is a user-specified constant defining
a range of K∗ values that must be computed accurately. Setting γ = 1.0 will compute an ε-approximation
for only the best scoring K∗ value. Setting γ = 0.0 will compute an ε-approximation for all K∗ values.
We typically set γ = 0.01 which causes the approximation algorithm to compute ε-approximations for all
mutation sequences with K∗ scores within two orders of magnitude of the best. Since the value of max

i≤m K
∗
i

is not known during the mutation search, we compute ε-approximations for all K∗ ≥ γK∗
o , where K∗

o is
the largest (best) K∗ value seen thus far in the mutation search. By definition, all values of K∗

o satisfy
the inequality K∗

o ≤ max
i≤m K

∗
i (in other words, all local maxima must be less than or equal to the global

maximum). As a result, by computing an ε-approximation for all mutations with K∗ ≥ γK∗
o , we will have

computed ε-approximations for all mutations with K∗ ≥ γ max
i≤m K

∗
i . When

K∗(1 − ε) ≤ K̃∗ ≤ K∗ 1

1 − ε
, (16)

we say K̃∗ is an ε-approximation to K∗. To prove that the computed K̃∗ is an ε-approximation to K∗, we
first show that intermutation pruning can compute an ε-approximation for qPL and then combine the result
with the intramutation pruning of Section 2.3.2. The following proof builds from the ideas used in the
intramutation pruning of Section 2.3.2. Assume that we’ve computed q

P
(Equation 2) using intramutation

pruning and now want to efficiently compute qPL (Equation 2). As stated in the previous paragraph, it is
only necessary to compute qPL accurately for mutation sequences with corresponding K∗ values that are
larger than our minimum accepting score (γK∗

o ). That is, we require an ε-approximation to qPL when

qPL

q
P
q
L

>
q ′

PL

q ′
P
q ′
L

γ, (17)

where qPL , q
P

, and q
L

are the partition functions used to compute K∗ and q ′
PL

, q ′
P

, and q ′
L

are the partition
functions used to compute K∗

o . Since we are performing a mutation search to find good mutation sequences
for a single ligand, we know q ′

L = q
L
. Therefore, it is only necessary to compute qPL accurately when

qPL >
q ′

PL

q ′
P

γ q
P . (18)

For notational convenience, we define K† = qPL
q
P

and K†
o = q ′

PL
q ′
P

.

Proposition 1. The algorithm in Fig. 8 computes an ε-approximation q∗
PL

for a bound partition function,

qPL , when qPL > K
†
oγ qP . If qPL ≤ K

†
oγ qP , then an (ε + δ)-approximation (δ ≥ 0) is computed.

Proof. To prove Proposition 1, we consider two cases. Case 1, Equation (18) holds thus requiring an
ε-approximation. Case 2, Equation (18) does not hold thus requiring only an (ε + δ)-approximation. We
derive pruning criteria for Case 1. The pruning criteria will compute a correct ε-approximation for Case 1
and will compute an (ε+δ)-approximation (δ ≥ 0) for Case 2. We will show that the (ε+δ)-approximation
holds only for partition functions falling into Case 2 and that these are situations for which we do not
require an ε-approximation (see Proposition 2).

After computing an ε-approximation to the partition function, it must be the case that q∗
n ≥ (1 − ε)qn,

which implies that pn ≤ εqn. If we assume Equation (18) holds (Case 1), then qn ≥ K
†
oγ qP , and we can
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FIG. 8. Intermutation pruning used in computing the bound partition function qPL . The values q∗ and p∗ and the

functions B(·) and ComputeMinEnergy(·) are as described in Fig. 4. For all mutations with qPL ≥ K
†
oγ qP , the

computed q∗ will represent an ε-approximation to the true partition function q such that q∗ ≥ (1 − ε)q.

conservatively conclude that pn ≤ εqn if

pn ≤ εK†
oγ qP. (19)

In reality, pn can be as large as εqn, but during the conformation search we don’t yet know the value
of qn. Therefore, given pk , we can prune conformation, ck+1 if pk+1 remains less than εK†

oγ qP thereby
satisfying Equation (19), i.e.,

pk+1 = pk + exp (−B(ck+1)/RT ) ≤ εK†
oγ qP . (20)

If we solve for B(ck+1), then the pruning criterion becomes

B(ck+1) ≥ −RT ln
(
εK†

oγ qP − pk

)
. (21)

Because pk ≤ p∗
k , Equation (21) can be rewritten as

B(ck+1) ≥ −RT ln
(
εK†

oγ qP − p∗
k

)
. (22)

Equation (22) is the same as Equation (9) if (εK†
oγ qP ) is substituted for (q∗

k ε). Therefore, when computing
qPL during a mutation search, we use the pruning criterion

B(ck+1) ≥ −RT ln
(
ψk − p∗

k

)
, (23)

where ψk = max
(
εK

†
oγ qP , q

∗
k ε

)
and p∗

k is an upper bound on the partition function of the pruned

conformations (Ck − Sk) as described in Section 2.3.2.

Lemma 3. When Equation (18) holds, any conformation ck+1 that satisfies Equation (23) can be
pruned during computation of the bound partition function while maintaining the invariant that q∗

k is an
ε-approximation to qk (where qk is qPL computed through conformation k and q∗

k is q∗
PL

computed through
conformation k).

By maintaining the invariant throughout computation of the bound partition function, the following
lemma holds:

Lemma 4. When a bound partition function is computed for a mutation sequence satisfying Equa-
tion (18) while maintaining the invariant that q∗

k is an ε-approximation to qk for all k (0 < k ≤ n), then,
by induction, at the end of the computation, q∗

n will be an ε-approximation to qn.
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The intermutation pruning algorithm is shown in Fig. 8.
We have shown that when qPL > K

†
oγ qP (Case 1) pruning using Equation (23) will produce an ε-approx-

imation q∗
PL

. When qPL ≤ K
†
oγ qP , it is possible that Equation (23) will prune the wrong conformations

resulting in q∗
PL
< (1 − ε)qPL . Thus, the computed q∗

PL
will be too small, and we will not have computed

an ε-approximation. However, by definition qPL will have been from a mutation whose corresponding
K† ≤ K

†
oγ (K∗ ≤ K∗

o γ ) (Case 2), and thus (by Proposition 1) it was not necessary to compute an ε-
approximation. These partition functions are easily identified by their magnitude. This completes the proof
of Proposition 1.

We now have the necessary tools to prove Proposition 2.

Proposition 2. An ε-approximation, K̃∗, is computed for K∗ when K∗ > γK∗
o .

Proof. We start by determining bounds on the computed K∗ for Case 1 and Case 2. In both cases, the
unbound partition function q∗

P
was computed according to the intramutation pruning of Section 2.3.2, and

the bound partition function q∗
PL

was computed according to the intermutation pruning described above
in this section. Note that because each term in the summation of each partition function (Equation 2) is
positive, all approximations q∗

n computed by omitting terms must be less than qn. Thus for both intra-
and intermutation pruning, when q∗

n is an ε-approximation to qn, we know that qn ≥ q∗
n > (1 − ε)qn.

Therefore,

q
P

≥ q∗
P
> (1 − ε)q

P
and

Case 1) qPL ≥ q∗
PL
> (1 − ε)qPL

Case 2) qPL ≥ q∗
PL
> 0.

The resulting K̃† (the approximation to K†) for high-scoring mutations (Case 1) will fall within the range

[
K†(1 − ε),K† 1

1 − ε

]
,

which implies that K̃∗ (the approximation to K∗) lies in the range

[
K∗(1 − ε),K∗ 1

1 − ε

]
,

as desired. For lower-scoring mutations (i.e., mutations with K∗ ≤ γK∗
o ) (Case 2), the resulting K̃† will

fall within the range

[
0,K† 1

1 − ε

]
,

which implies that K̃∗ lies in the range

[
0,K∗ 1

1 − ε

]
.

Therefore, an ε-approximation K̃∗ is computed for K∗ when K∗ > γK∗
o and an (ε + δ)-approximation

(δ ≥ 0) is computed when K∗ ≤ γK∗
o . This completes the proof of Proposition 2.
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D. Computing a bound on a conformation’s minimum energy

In our structural model, we treat some residues as rigid while others have a rigid backbone but flexible
side-chains. If we let R represent the set of all rigid atoms (all atoms of the steric shell and backbone
atoms of the flexible residues), then for a system with k flexible residues the energy of this system can be
computed as

E0 = A00 +
∑
i≤k

A0i +
∑
i≤k

Ai0 +
∑
i≤k

∑
i<j≤k

Aij , (24)

where A is a precomputed residue-indexed pairwise energy matrix. A residue-indexed pairwise energy
matrix is a (k + 1) × (k + 1) matrix composed of energy terms describing each residue’s interaction
energy with the backbone, itself, and all other residues. A detailed description of the matrix elements is
as follows: A00 is the sum of all energy terms exclusively involving atoms in R, A0i is the sum of all
energy terms involving at least one atom of residue i and at least one atom from set R, Ai0 is the sum of
all energy terms involving only atoms of residue i (intraresidue energy), and Aij is the sum of all energy
terms involving at least one atom from each of residues i and j .

Similarly, one can define the energy Em of a minimized conformation, using a different matrix M of
pairwise energy terms evaluated on the energy minimized conformation:

Em = M00 +
∑
i≤k

M0i +
∑
i≤k

Mi0 +
∑
i≤k

∑
i<j≤k

Mij , (25)

where M00, M0i , Mi0, and Mij are the analogues of A00, A0i , Ai0, and Aij except that they are computed
based on the positions of the atoms in the energy-minimized structure.

During both intra- and intermutation pruning (see Section 2.3.2 and Appendix C), a lower bound on
the energy of the energy-minimized conformation is required. If we replace M00, M0i , Mi0, and Mij in
Equation (25) with lower bounds D00, D0i , Di0, and Dij such that D00 ≤ M00, Di0 ≤ Mi0, D0i ≤ M0i ,
and Dij ≤ Mij , then we can compute a bound

Eb = D00 +
∑
i≤k

D0i +
∑
i≤k

Di0 +
∑
i≤k

∑
i<j≤k

Dij , (26)

such that Eb ≤ Em.
Because Eb is simply the sum of O(k2) pairwise energy terms, if a precomputed residue-indexed

lower-bound pairwise energy matrix is available, then Eb can be computed in time O(k2). The use of a
precomputed residue-based pairwise energy matrix thus avoids the costly computation of O(a2) energy
terms, where a is the total number of atoms in the system and k 	 a.

In our implementation of the K∗ algorithm, we precompute a residue-indexed lower-bound pairwise
energy matrix V over all rotamers for each residue. This matrix contains a lower bound (Vij ) on the
energy for all allowed pairs of rotamers as well as lower bounds V00, V0i , and Vi0 on the shell–shell, shell–
residue, and residue–self energies (respectively, as described above). The matrix we use in computation is
thus slightly different than those described in Equations (24), (25), and (26). The matrix V contains lower-
bound energy terms for all rotamers for all residues. Therefore, the matrix has size (km+ 1)× (km+ 1)
where k is the number of flexibly-modeled residues and m is the number of allowed rotamers (spanning all
residue types). When computing an energy bound, terms corresponding to the currently assigned rotamers
are used in a manner similar to those described for Equations (24), (25), and (26).

To prevent one rotamer from minimizing into another, the maximum dihedral movement allowed during
energy minimization is bounded (as described in Step 2 of Section 2.2). As a result, one can easily compute
the terms of matrix V by examining all pairs of residues in their active site specified relative orientations.
The lower-bound energy matrices are precomputed before K∗ evaluation or a mutation search is performed.

E. Cloning, mutation, expression, purification, and fluorescence

Cloning. GrsA-PheA was cloned from GrsA by PCR as described previously (Stachelhaus and Marahiel,
1995). PCR reactions were performed using PfuTurbo DNA Polymerase (Stratagene) per manufacturer’s
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directions. PCR products and pQE-60 were digested with 10U NcoI and 10U BamHI for 2 hrs at 37◦C
(50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 100 mM NaCl). PCR products and linearized vector were gel
purified and recovered using the QIAquick gel extraction kit (Qiagen), and ligated (2U T4 ligase, 50 mM
Tris-HCl pH 7.6, 10 mM MgCl2, 1 mM ATP, 1 mM DTT, 5% (w/v) PEG-8000, 1 hr at 24◦C). Escherichia
coli M15(pRep4) were transformed with the PheA pQE-60 construct and selected by growth on Luria
Broth (LB) supplemented with 50 µg/ml ampicillin and 30 µg/ml kanamycin.

Mutation. Mutations were introduced by site directed mutagenesis using the QuikChange Site-Directed
Mutagenesis Kit (Qiagen). Protocols were carried out per manufacturers instructions with the following prim-
ers: 301G:CGTTAATTACAGGAGGCTCAGCTACC (Tm = 72◦C)330F:CCTACGGAAACAACTTTTTGTGCGACTACATGG
(Tm = 76◦C) 330W: GGCCCTACGGAAACAACTTGGTGTGCGACTACATGG (Tm = 77◦C).

Expression. 1 Liter of LB was inoculated and grown at 37◦C until OD600 = 1.5–1.8. IPTG was added
(1.5 mM) and cultures grown for an additional 3 hr. Cells were harvested by centrifugation at 2,500 g for
40 min, resuspended in 20 mL LB, pelleted by centrifugation at 2,000 g for 30 min, and frozen at −80◦C.

Purification. Cells were thawed, resuspended in buffer (20 mM Tris-HCl pH 7.4, 50 mM NaCl, 50 µM
PMSF) and lysed by sonication. Cell extract was clarified by centrifugation at 40,000 g for 40 min and
0.45 µm syringe-driven filtration. PheA-His6 was purified by Ni2+ affinity chromatography using a gradient
of 0–100 mM imidazole. Pure PheA-His6 was dialyzed in 50 mM Hepes pH 7.6.

Fluorescence. Each protein solution (50 mM Hepes pH 7.6) was supplemented with 2 mM dithiothreitol
(DTT), 100 mM NaCl, and 10 mM MgCl2. The excitation wavelength was 280 nm. Substrate was titrated
into the protein solution and fluorescence quenching was measured at 340 nm.
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