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Abstract

A wealth of interesting computational problems arises
in proposed methods for discovering new pharmaceuti-
cals. This paper surveys our recent work in three key
areas, using a Physical Geometric Algorithm (PGA) ap-
proach to data interpretation, experiment planning, and
drug design:

(1) Data-directed computational protocols for high-
throughput protein structure determination. A key com-
ponent of structure determination through nuclear mag-
netic resonance (NMR) is that of assigning spectral
peaks. We are developing a novel approach, called Jig-

saw, to automated secondary structure determination
and main-chain assignment. Jigsaw consists of two main
components: graph-based secondary structure pattern
identification in unassigned heteronuclear (15N-labeled)
NMR data, and assignment of spectral peaks by prob-
abilistic alignment of identified secondary structure el-
ements against the primary sequence.

(2) Experiment planning and data interpretation al-
gorithms for reducing mass degeneracy in mass spec-
trometry (MS). MS offers many advantages for high-
throughput assays (e.g. small sample size and large mass
limits), but it faces the potential problem of mass degen-
eracy — indistinguishable masses for multiple biopoly-
mer fragments (e.g. from a limited proteolytic digest).
We are studying the use of selective isotopic labeling
to substantially reduce potential mass degeneracy, es-
pecially in the context of structural determination of
protein-protein and protein-DNA complexes.
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(3) Computer-aided drug design (CADD). We are
developing new CADD tools and applying them to the
design of an inhibitor for the Core-Binding Factor-β on-
coprotein (CBFβ-MYH11), a fusion protein involved in
some forms of Acute Myelomonocytic Leukemia (AMML).
Computational-structural studies of CBF help deter-
mine the molecular basis for its function and assist in
the development of therapeutic strategies. A key issue
in such studies is geometric modeling of protein flexibil-
ity; our approach attempts to account for flexibility by
using an ensemble of structures representing low-energy
conformations as determined by solution NMR.

Our long-range goal is the structural and functional
understanding of biopolymer interactions in systems of
significant biochemical as well as pharmacological in-
terest. The research overviewed here represents a set of
important steps towards that goal.

1 Introduction

The field of Physical Geometric Algorithms (PGA) stud-
ies computational processes that compute or reason about
geometric or spatial relationships in the physical world,
and their realization in application areas such as robotics
and microelectromechanical systems. PGA research pur-
sues the value proposition that, for such systems, pre-
dictions of behavior, arguments of correctness, and com-
binatorial precision devolve to a geometric analysis.

Some of the most challenging and influential oppor-
tunities for PGA arise in developing and applying in-
formation technology to understand the molecular ma-
chinery of the cell. Our recent work (and work by oth-
ers) shows that many PGA techniques may be fruitfully
applied to the challenges of computational molecular bi-
ology. PGA research may lead to high-throughput, au-
tomated systems that are useful in structural molecular
biology.

Concomitantly, a wealth of interesting computational
problems arises in proposed methods for discovering
new pharmaceuticals. These problems include iden-
tifying the low-energy conformations of molecules, in-
terpreting protein NMR (nuclear magnetic resonance)
and X-ray data, inferring constraints on the shape of
active drug molecules based on measurements of activ-
ity of related drug molecules, and docking candidate
drug molecules to known protein targets. We survey
our research on computer-aided drug design, new tech-
niques for automated NMR data interpretation, and ex-
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periment planning and data interpretation for reducing
mass degeneracy in mass spectrometry.

2 Computer-Aided Drug Design

PGA research in computational structural biology can
assist in our long-range goal of understanding biopoly-
mer interactions in systems of significant biochemical as
well as pharmacological interest. One example is given
by our work on Core-Binding Factor (CBF). CBF is a
heterodimeric transcription factor involved in hemato-
poesis. Oncogenic translocations in CBF-α and -β are
implicated in Acute Myelomonocytic Leukemia (AMML).
The oncogenic form of CBF-β, fusion protein CBFβ-
MYH11, oligomerizes with wild-type α-subunits to se-
quester them outside the nucleus, vitiating transcrip-
tion. The ultimate goal of this research is to design a
small-molecule inhibitor to disrupt the complex formed
by the wild-type α with the oncoprotein CBFβ-MYH11.
As a first step, we designed a ligand in silico to disrupt
dimerization of the wild-type α and β subunits. Our
inhibitor could be useful in itself, in that one could po-
tentially disrupt the healthy transcription factor with
a small ligand, allowing new in vivo studies of AMML.
Our inhibitor could also serve as a lead compound to
inhibit the oncogenic form of CBF-β.

A key issue was geometric modeling of protein flex-
ibility. In our “Computational Screening Studies for
Core-Binding Factor-β: Use of Multiple Conformations
to Model Receptor Flexibility,” [19] we present an ap-
proach in computer-aided drug design that attempts
to account for a target protein’s flexibility. Computa-
tional techniques were employed in docking a database
of 70,000 ligands to an ensemble of structures represent-
ing low-energy conformations of CBF-β (as determined
by solution NMR). Docking algorithms were used for
each run and the top binding ligands were consolidated
and screened in the wet-lab. Using our protocol, a small
molecule inhibitor was designed to prevent dimerization
of CBF. Our results — a ligand designed to disrupt the
wild-type protein-protein interface — were validated in
the wet-lab using electrophoretic mobility shift assays
and SAR by NMR (15N-HSQC chemical shift perturba-
tion).

3 Algorithms for NMR Structural Biology

3.1 Introduction

High-throughput, data-directed computational proto-
cols for Structural Genomics (or Proteomics) are re-
quired in order to evaluate the protein products of genes
for structure and function at rates comparable to cur-
rent gene-sequencing technology. We are pursuing a
PGA approach known as the Jigsaw algorithm, a novel

high-throughput, automated approach to protein struc-
ture characterization with nuclear magnetic resonance
(NMR). For more details on this work, please see our
recent papers in The Journal of Computational Biol-
ogy, and The International Conference on Computa-
tional Molecular Biology (RECOMB) [3, 4, 16].

Jigsaw applies graph algorithms and probabilistic
reasoning techniques, enforcing first-principles consis-
tency rules in order to overcome a 5-10% signal-to-noise
ratio. Jigsaw utilizes only four NMR experiments, none
of which requires 13C-labeled protein, thus dramati-
cally reducing both the amount and expense of wet lab
molecular biology and the total spectrometer time. Re-
sults for three test proteins demonstrate that Jigsaw
correctly identifies 79-100% of α-helical and up to 65%
of β-sheet NOE connectivities, and correctly aligns up
to 90% of secondary structure elements. Jigsaw is very
fast, running in minutes on a Pentium-class Linux work-
station. This approach yields quick and reasonably ac-
curate (as opposed to the traditional slow and extremely
accurate) structure calculations. It could be useful for
quick structural assays to speed data to the biologist
early in an investigation, and could in principle be ap-
plied in an automation-like fashion to a large fraction
of the proteome.

3.2 Algorithmic Approach

Jigsaw consists of two main components: (1) graph-
based secondary structure pattern identification in unas-
signed heteronuclear (15N-labeled) NMR data, and (2)
assignment of spectral peaks by probabilistic alignment
of identified secondary structure elements against the
primary sequence. Deferring assignment eliminates the
bottleneck faced by traditional approaches, which begin
by correlating peaks among dozens of experiments.

The first key idea of Jigsaw (see Figure 1) is that
regular protein secondary structure yields stereotypical
through-space atom interactions, which are visible in a
NOESY spectrum through the Nuclear Overhauser Ef-
fect (NOE). We can find such patterns in a spectrum
even if the positions in the primary sequence (assign-
ments) are unknown.

Jigsaw encodes NOESY data in a graph with nodes
representing unassigned putative residues and edges rep-
resenting possible interactions observed in the NOESY
spectrum. This graph is very noisy (only about 10% sig-
nal) since many residues have approximately the same
chemical shift for an interacting proton. However, buried
within this graph is a set of edges that look like the
canonical α-helix and β-sheet interactions above.

Jigsaw relies on the fact that the noise edges are
evenly distributed, and thus that it is unlikely that large
groups of incorrect edges will conspire to form alpha/beta
patterns. Jigsaw imposes a set of constraints derived
from the patterns in order to focus a graph search,
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Figure 1: NOESY Hα-HN (dashed) and HN-HN (dot-
ted) interactions in (a) α-helices and (b) β-sheets.

working a “jigsaw puzzle” to find the correct secondary
structure (see Figure 2). Of course, this jigsaw puzzle is
somewhat different in that it has a very large number of
extra pieces (and some missing ones, as well). However,
we have shown that empirically the graph constraints
serve to focus the search and avoid combinatorial ex-
plosion.

Jigsaw ranks secondary structures it discovers, based
on criteria such as how well spectral peaks match, how
many edges are missing, how many of the residues the
graphs reach, and so forth. Figure 3 show β-sheets com-
puted by Jigsaw for one example protein, CBF-β (dis-
cussed above).

The second step in Jigsaw is to align the α-helices
and β-strands to substrings of the primary sequence.
This relies on the use of a TOCSY spectrum, which
has “fingerprints” of the protons on the side chains of
the residues. These fingerprints in turn indicate prob-
able amino acid types, which we locate in the primary
sequence. This process is carried out probabilistically,
assigning the probability that a strip is a certain AA
type based on the results of a point-matching algorithm
between observed and expected chemical shifts. Fig-
ure 4 shows both canonical proton shifts for the differ-
ent amino acid types, culled from the BioMagResBank
(BMRB), and observed proton shifts for some residues
of Human Glutaredoxin. While most residues don’t
look that similar to the expected fingerprints, enough
of them look enough like the expected fingerprints that
a long helix or strand can be correctly aligned.

Given individual AA-type probabilities, the align-

(a)

(b)

(c)

Figure 2: Jigsaw algorithm overview: (a) identify
graph fragments, (b) merge them sequentially, and (c)
collect them into complete secondary structure graphs.
Only correct fragments are shown here. Graphs from
experimental data also generate a large number of in-
correct fragments, but mutual inconsistencies prevent
them from forming either long sequences or large sec-
ondary structure graphs.

ment proceeds by computing the joint probability over
a secondary structure string (helix or strand), starting
at each location in the primary sequence. The best
match is taken as the proper alignment.

This alignment process has proved effective in prac-
tice. Table 1 provides example results for the helices
and strands of CBF-β. The first set of results uses fin-
gerprints collected from a set of experiments; the second
uses fingerprints observed by a single experiment, the 80
ms 15N TOCSY. Results indicate both the rank of the
correct alignment in the list of results, and its relative
score — either the ratio of it to the second-best (if it’s
best) or the ratio of it to the best (if it’s not). While the
TOCSY alone yields good alignment results, the multi-
exeriment results suggest that as TROSY-based pulse
sequences improve, the results for a single experiment
should get even better. In general, long sequences align
better than short ones, although unusually noisy data
can disrupt the alignment.
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Figure 3: Some β-sheets of CBF-β computed by Jigsaw. Edges: solid=correct; dotted=false negative; X=false
positive.
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Figure 4: (top) BMRB 1H mean chemical shifts over
different amino acid types. These shifts define “finger-
prints” for the different amino acid types. (bottom) Ob-
served fingerprints for some residues of Human Glutare-
doxin. Observed fingerprints don’t exactly match ex-
pectations (e.g. 95 and 96 are both L), but yield enough
information that joint probability across an entire α-
helix or β-strand identifies the proper alignment in the
primary sequence.

Sequence Multi-experiment 15N TOCSY
Rank ρ Rank ρ

α1:10–16 1 9 · 104 1 3 · 102

α2:18–23 1 2 · 104 17 4 · 10−6

α3:34–36 1 4 · 101 3 7 · 10−2

α4:43–52 1 1 · 1013 1 2 · 104

α5:131–140 1 7 · 1014 1 1 · 1019

β1,1:27–31 1 4 · 103 5 3 · 10−2

β1,2:55–60 1 2 · 106 1 2 · 104

β1,3:65–68 1 2 · 101 1 1 · 103

β2,1:96–104 1 2 · 101 1 7 · 102

β2,2:108–117 1 4 · 1010 11 3 · 10−5

β2,3:122–130 1 3 · 104 5 1 · 10−1

Table 1: Fingerprint-based alignment results for α-
helices and β-strands of CBF-β, with fingerprints ob-
tained from a set of experiments or a single 80 ms 15N
TOCSY. ρ indicates the relative score of the alignment
— relative to either the best alignment, if the correct
one is not best, or else to the second-best alignment.

3.3 Summary

Jigsaw offers a novel approach to the automated assign-
ment of NMR data and the determination of protein
secondary structure. Since Jigsaw uses only four spec-
tra and 15N-labeled protein, it is applicable in a much
higher throughput fashion than traditional techniques,
and could be useful for applications such as quick struc-
tural assays and Structure-Activity Relation (SAR) by
NMR. It demonstrates the large amount of information
available in a few key spectra. Finally, Jigsaw formal-
izes NMR spectral interpretation in terms of graph al-
gorithms and probabilistic reasoning techniques, laying
the groundwork for theoretical analysis of spectral infor-
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mation. Jigsaw has been successfully applied to NMR
data sets from (1) the glutaredoxin family of proteins,
which play an important role in maintenance of the re-
dox state of the cell as well as in DNA biosynthesis and
(2) Core-Binding Factor (described above). These are
just first steps in developing new PGA for NMR struc-
tural biology. Future work will extend the Jigsaw for-
malism to apply to larger proteins, develop faster and
more accurate algorithms, and collaborate with NMR
structural biologists to develop a useful suite of high-
throughput tools. PGA will be important for spectral
intrerpretation, conformational search, pattern recogni-
tion, kinematics, dynamics, and modelling. Computa-
tional approaches adapted from robotics and machine
vision can be useful in solving key problems in NMR
structural biology. New algorithms are required that
can quickly extract significantly more structural infor-
mation from sparse experimental data. For example,
in [16], a novel approach to multidimensional NMR
analysis is proposed in which the data are interpreted
in the time-frequency domain, as opposed to the tradi-
tional frequency domain. Time-frequency analysis ex-
poses behavior orthogonal to the magnetic coherence
transfer pathways, thus affording new avenues of NMR
discovery. In particular, we demonstrate the hereto-
fore unknown presence of through-space inter-atomic
distance information within 15N-edited heteronuclear
single-quantum coherence (15N-HSQC) data. A bio-
physical model explains these results, and is supported
by further experiments on simulated spectra.

4 Algorithms for Structure from Mass Spectrometry

4.1 Introduction

Mass spectrometry (MS) promises to be an invaluable
tool for functional genomics, by supporting low-cost,
high-throughput experiments. However, large-scale MS
faces the potential problem of mass degeneracy — indis-
tinguishable masses for multiple biopolymer fragments
(e.g. from a limited proteolytic digest). In structural
mass spec, mass peaks must be uniquely assignable in
order to distinguish hypotheses. We are studying the
PGA tasks of planning and interpreting MS experi-
ments that use selective isotopic labeling, thereby sub-
stantially reducing potential mass degeneracy. Selec-
tive isotopic labeling allows, for example, all Leu and
Ala residues in a protein to be labeled using either aux-
otrophic bacterial strains or cell-free synthesis. Mass
tags — the mass differences between unlabeled and la-
beled proteins — can eliminate mass degeneracy by
ensuring that potential fragments have distinguishable
masses (see Figure 5). For more details on this work,
please see our recent papers in The Journal of Compu-
tational Biology and The International Conference on
Intelligent Systems for Molecular Biology (ISMB) [1, 2].
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Figure 5: MALDI-TOF mass spectra of an 18 bp DNA
oligonucleotide d(GACATTTGCGGTTAGGTC): (top)
13C-,15N-labeled 18-mer; (bottom) 12C,14N-labeled 18-
mer. The m/z difference between the two peaks is called
the mass tag.

We have developed algorithms to support an experi-
mental-computational protocol called Structure-Activity
Relation by Mass Spectrometry (SAR by MS), for eluci-
dating the function of protein-DNA and protein-protein
complexes (see Figure 6). In SAR by MS, a complex is
first modeled computationally to obtain a set of binding-
mode and binding-region hypotheses. Next, the com-
plex is crosslinked and then cleaved at predictable sites
(using proteases and/or endonucleases), obtaining a se-
ries of fragments suitable for MS. Depending on the
binding mode, some cleavage sites will be shielded by
the interface/crosslinking. Residues exposed in the iso-
lated proteins that become buried upon complex forma-
tion are considered to be located either within the in-
teraction regions or inaccessible due to conformational
change upon binding. Thus, depending on the func-
tion, we will obtain a different mass spectrum. Analysis
of the mass spectrum (and perhaps comparison to the
spectra of the uncomplexed constituents) permits de-
termination of binding mode and region, provided that
peaks are uniquely assignable.

We have explored the PGA problem of eliminating
mass degeneracy in SAR by MS, developing a compu-
tational experiment planning framework that seeks to
maximize the expected information content of an SAR
by MS experiment, and an efficient data analysis algo-
rithm that interprets the resulting data.

4.2 Algorithmic Approach

For ease of exposition, we address proteins and protein-
protein complexes here. A protein or protein-protein
complex is digested by a protease, yielding a set of s
possible segments. Any digestion site might be shielded,
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Figure 6: SAR by MS protocol overview. Mass peaks
implicate residues in interaction site and nearby in
space, assuming that mass peaks can be uniquely as-
signed. Isotopic labeling is employed to reduce mass
degeneracy. Several different labelings may be used
for ‘multidimensional’ MS (resulting in several different
spectra, which must be correlated during data analysis).

yielding a set of O(s2) possible 1-fragments in the se-
quential union of segments. Finally, any pair of these
might be cross-linked, yielding a set of O(s4) possible
2-fragments in the cross product of 1-fragments.

Our goal is to ensure that no pair of fragments has
the same mass. The entails enforcing a system of lin-
ear inequalities of the form fkl(X) 6= 0, where k and l
are fragments and X is a labeling (a {0, 1}2 vector indi-
cating whether or not each different amino acid type is
13C and/or 15N labeled). There are a quadratic num-
ber of such constraints, so a complex with s cleavage
sites per protein has O(s8) such constraints to satisfy.
However, it is clear that not all 1-fragment/1-fragment
interactions are possible. Some may be excluded based
on 1-fragment length. For example, it may be impos-
sible to shield two cleavage sites that are t-apart with
a single u-mer if u � t. Such reasoning requires care-
ful modeling: for example, the longer strand may be
heavily kinked. In general, the set of possible binding
modes can be constrained by a variety of techniques, for
example by docking studies, chemical shift mapping for
protein-protein complexes, and docking algorithms, to-
gether with homology searching, DNA footprinting, and
mutational analysis. When available, this information
restricts the set of a priori fragment interpretations.

The goal of single-experiment planning is to find a
labeling X that minimizes the amount of mass degen-
eracy. To do this, we attempt to minimize the number
of constraint violations of the form fkl(X) = 0. We
have shown this problem to be NP-complete, even if
restricted to 13C labeling.

Even if we could solve single-experiment planning,
the resulting labeling might have too much mass de-

13C-labeled 15N-labeled χ P(interp)

Unlabeled Unlabeled 27 0.021
NDQEHILKSTWV RCQHKMSTWYV 18 0.88
QGISWV ACQEGIKPY 10 0.99
ANDCEGHILS RCQGILMFPSWY 3 0.9998
ARNQEHKMSV ACQGLMWY 1 0.99999
DCQEILSW ANEGLKMFTWY 0 0.9999997

Table 2: Isotopically-labeled experiment planning re-
sults from the randomized algorithm for the protein
ubc9. χ = number of remaining ambiguities. P(interp)
is the probability that spectral differencing can elimi-
nate all incorrect fragments.

generacy. Therefore, we pursue a different approach,
allowing experiment plans to use several different label-
ings. A necessary condition is that every pair of frag-
ments be distinguishable in some labeling (else we could
never determine which of the pair is present). However,
this isn’t sufficient if there are multiple experiments,
since a fragment k could be mass degenerate with g1

in experiment 1 and g2 in experiment 2 (and thus dis-
tinguishable from g2 in experiment 1 and from g1 in
experiment 2, satisfying the necessary condition), mak-
ing it impossible to know whether k actually exists. A
sufficient condition is that for every fragment, there is
at least one labling in which it is distinguishable from
every other fragment.

The sufficient condition is too strong in practice,
since there are more potential than observed fragments,
and (as discusssed below), we can leverage negative ev-
idence. We have implemented a randomized algorithm
to plan a set of labelings that satisfies the necessary
condition. Table 2 demonstrates its effectiveness: the
number of degenerate pairs goes to 0 after a small num-
ber of experiments, and the probability of interpretation
(discussed below) converges to 1.

Given a set of mass spectra, we can leverage nega-
tive evidence to eliminate fragments not supported by a
peak in each spectrum. An efficient (polynomial-time)
algorithm for testing the existence of fragments builds
a range tree for the fragments, with keys representing
intervals around the predicted masses. This preprocess-
ing step can be performed in parallel with the molecular
biology. Then, given a set of spectra, simply look up
each peak to find fragment explanations and intersect
the sets.

A given experiment plan can be analyzed in a prob-
abilistic framework that predicts how likely it is that
the interpretation algorithm will be able to resolve all
ambiguities. The key ideas are outlined below, with
intuition in Figure 7.

1. Determine the a priori probability ℘ that a frag-
ment hypothesis is incorrect (e.g. uniform ℘ =
1 − p∗/p, or based on model). Correctness is a
function of the biological ground truth.
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2. A fragment f appears in an experiment i when
something it is degenerate with (set C(f, i) of size
c(f, i)) is correct. Appearance is a function of our
observations.

P (appears(f, i)) = 1 −
∏

g∈C(f,i)

P (incorrect(g))

= 1 − ℘c(f,i)

3. Spectral differencing can eliminate fragment f un-
less it appears in all experiments.

P (elim(f, L)) = 1 −
∏

i∈L

P (appears(f, i))

= 1 −
∏

i∈L

(1− ℘c(f,i)).

4. An experiment plan L is interpretable if all frag-
ments are either correct or eliminatable.

P (interpretable(L))

=
∏

f∈F

(1− P (incorrect(f)) · (1− P (elim(f,L))))

=
∏

f∈F

(1− ℘ ·
∏

i∈L

(1 − ℘c(f,i))).

P(interp) in Table 2 above shows that the probability
of interpretability converges to 1 for an example protein.
Fig 8 provides another example: how likely it is that
randomly planned sets of labelings are correct. With
5 labelings, it is quite likely (practically guaranteed for
ubl1) that the experiments will be interpretable.

4.3 Summary

We have tested our high-throughput techniques for ob-
taining structure from mass spec on the ubl1/ubc9

protein-protein complex. Yeast ubiquitin conjugating
enzyme ubc9 has a functional human homolog ubei2,
which is critical for regulating the cell cycle. It com-
plexes with ubl1 (a human ubiquitin-like protein) and
associates with the rad51/rad52 proteins in their double-
stranded DNA repair pathway. ubei2/ubc9 is also in-
volved in DNA recombination, and is essential for cell-
cycle progression. These are just first steps in devel-
oping new PGA for structural MS. Future work will
extend our algorithmic approach to SAR by MS, de-
veloping more efficient approximation algorithms, and
generalizing our method to larger complexes by incor-
porating prior information into the probabilistic frame-
work. In general, the set of possible binding modes can
be constrained by a variety of techniques, for example
by protein docking algorithms and NMR chemical shift
mapping for protein-protein complexes, together with
homology searching, DNA footprinting, and mutational

A B E GC D F

(a)

A B C DE F G CA E B DF G
(b)

A CB D E F G
(c)

Figure 7: This figure should be viewed in color.
Postscript is available at http://www.cs.dartmouth.edu/

~cbk/papers/icra01.ps.gz. Log-space intuition for prob-
ablistic framework. (a) A priori fragment probabili-
ties. (b) Probability of appearance depends on equiva-
lence classes of mass-degenerate fragments in each ex-
periments. (c) Probability of elimination depends on
appearance in all experiments.

analysis. When available, this information restricts the
set of a priori fragment interpretations. In turn, this
should greatly help the combinatorics, since an experi-
ment would only need to distinguish the fragments iden-
tified by hypothesis, and could allow degeneracy in un-
related fragments. In this model, predictions of docking
and binding will be made on the computer, and label-
ing+MS would be performed as a way of screening these
hypotheses to test which are correct.
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