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The goal of discriminative sequence learning is to learn how to classify items that can be

arranged in a sequence. Many models have been proposed including logistic regression,

the maximum entropy Markov model, the conditional random field, the input output

Markov model, the hidden random field, and template models based on restricted Boltz-

mann machines. These models differ along several dimensions: whether they can be

represented by a directed graphical model or an undirected one, whether or not they are

chain structured, whether or not they are fully observed models, and whether or not they

can incorporate knowledge about larger scale label structures. In this work, we compare

these models on several synthetic problems and on a larger information extraction task.
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Chapter 1

Introduction

Sequential data is found in a wide variety of domains including computational biology

and natural language processing, arising in tasks such as predicting protein-protein inter-

actions, analyzing the semantics of documents, and recognizing speech. Systems designed

to solve such tasks often involve multiple stages, each of which must function well as even

small errors can adversely affect the overall performance. One common step is to affix de-

scriptive labels to data in order to aid higher level processing. For example, successfully

predicting protein-protein interactions requires knowledge of the secondary structures of

the proteins and semantic analysis might involve annotating tokens with parts of speech

tags.

The goal of sequence labeling is to classify all items in a sequence. Most classification

methods make the assumption that the data are independent and identically distributed.

This assumption does not necessarily hold for items that can be arranged in a sequence

because there are often interactions between the observations and the labels and between

the labels. Considering the joint classification of all the items is also difficult because

observations are of an indeterminate dimensionality and the number of possible classes

is exponential in the length of the sequences.

Generative models like the hidden Markov model (HMM) [26] were recognized as

1



Chapter 1. Introduction 2

being inappropriate for sequence labeling by McCallum, Freitag and Pereira [19], and

so recent research has focused on discriminative models. The conditional random field

(CRF) model proposed by Lafferty, McCallum and Pereira [16] has become the dominant

methods, achieving state of the art performance on many tasks.

As noted by Altun and Hofmann [1], two challenges facing researchers are objective

functions and architectures, and most recent work has focused those areas. The most

commonly used objective function is the log likelihood. Kakade, Teh and Roweis [14]

proposed maximizing the marginal probabilities of each label instead of the joint proba-

bility. Altun, Hofmann and Johnson [2] and Altun and Hofmann [1] have experimented

with boosting and large margin methods and have achieved limited success. Following

the work of Murray and Ghahramani [22], there has been interest in applying Bayesian

methods to sequential models. Qi, Szummer and Minka [25] proposed Bayesian condi-

tional random fields and reported good results on several data sets.

Discriminative models can use observations in almost any way: observations relating

to a particular label may involve any part of the observation sequence and may be non-

independent. However, it is typical to only look at local structures within labels as

it can be difficult to extend models to handle long term dependencies and large scale

structures while keeping the complexity of the model small. Sutton and McCallum [30]

proposed a model in which long term dependencies are incorporated in a data-dependent

manner. However, their model does not learn large scale structures. The semi-Markov

CRF proposed by Sarawagi and Cohen [27] attempts to deal with structures by explicitly

modeling segmentations. While their initial results seem promising, the semi-Markov

CRF may not scale well since all possible segmentations need to be considered during

inference.

In this thesis, we review several standard models and explore two families of models

that can capture large scale structures: chain structured latent state models and template

models. In particular, we look at the application of input output hidden Markov models
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[4], hidden random fields [14], and parameterized label features [9] to sequence labeling.

We compare the models using several toy problems and an information extraction

task. We find that template models perform quite well on toy data, often outperforming

standard models in tasks where specific kinds of large scale structure exists. Latent state

models, while theoretically quite powerful, suffer from several problems that will likely

limit their usefulness in practice.



Chapter 2

Background

Before we begin the discussion of models for performing sequence labeling, we need to

introduce some background material. We begin this chapter with an overview of some of

the notation that will be used. We then give a brief summary of graphical models, both

directed and undirected, and product models, outlining methods for performing inference

and for learning parameters. We discuss the parameterization of undirected models in

terms of features and observation features and conclude with details of the evaluation

metrics that will be used to evaluate the models.

2.1 Notation

Let X = {x1, . . . ,xT} be a sequence of observations. We assume that all observations xi

are vectors in Rd. Categorical observations are represented using a one-hot encoding. If

an observation can take on any of |X | distinct values, we represent the kth value with the

vector x where xk = 1 and xj = 0, j 6= k. We often write |X | to denote the dimensionality

of the observations.

Let Y = {y1, . . . , yT} be a sequence of annotations associated with X. The yi are

assumed to be discrete and scalar, with yi ∈ Y . Let D = {D1, . . . , DN}, Dj = (Xj, Yj),

be a collection of observations with associated labels. Each (Xj, Yj) are assumed to be

4
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independently and identically distributed, and each may have a different length Ti. In

models with latent variables, we use the notation Dc = {D1, . . . , DN}, Dj = (Xj, Yj, Hj),

to represent a complete set of data. The tth element of a sequence Yj will be referred to

as y
(j)
t .

2.2 Graphical Models

Graphical models represent the joint distribution of a collection of random variables

U = {u1, . . . , uT} with a graph G = (V , E), where V is the set of vertices and E is

the set of edges. The vertices represent the random variables and the structure of the

graph represents conditional independencies between them. The graph can either be

directed or undirected, the choice of which affect both the conditional independencies

and the parameterization of the joint distribution. In diagrams of graphical models,

shaded vertices represent observed variables that are conditioned upon and not modeled.

In this section, we briefly introduce directed and undirected graphical models. One

general method for doing probabilistic inference on trees is described. We also provide

an overview of methods for learning in fully observed and partially observed graphical

models. We refer the reader to Jordan [12] for more details on probabilistic inference and

learning.

2.2.1 Directed Models

Factorizations of the form

p(u1, . . . , uT ) =
T∏

i=1

p(ui|uπi
) (2.1)

where uπi
are the parents of node ui can be represented by a directed graph called a Bayes

net. Each variable ui is represented by a node and directed edges are drawn from a node

to its children. The basic conditional independencies in the graph are {ui ⊥ uνi
|uπi
}

where uνi
is the set of all non-descendants of node ui.
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2.2.2 Undirected Models

Undirected graphical models, or Markov random fields (MRFs), model the joint dis-

tribution as a product of potential functions defined on subsets of the variables. Let

I = {1, . . . , T} be the set of indexes of the random variables. Define C ⊆ P(I), where

P(I) is the power set of I, to be the set of all indexes of cliques of nodes. The joint

distribution is given by

p(u1, . . . , uT ) =
1

Z

∏
c∈C

φc(uc) (2.2)

where φc are arbitrary non-negative potential functions, uc are the variables indexed by

set c, and Z =
∑

u

∏
c φc(uc) is the normalization constant. A graphical representation

is obtained by, for all c ∈ C, linking all pairs of nodes that are indexed by c.

A random variable ui is said to be conditionally independent of all other random vari-

ables given its neighbours. In general, the set of conditional independencies implied by an

undirected graphical model is different from the set implied by a directed model. How-

ever, directed and undirected models express the same set of conditional independencies

for tree structures in which a node has at most one parent.

One must explicitly compute the normalization constant in order to obtain probabil-

ities. For conditional models, there is a normalization constant per observation sequence

as the constant depends on the observations. The global normalization does have some

advantages. Rather than being hidden by a local normalization, the contribution of each

potential is weighed directly against the contribution of all other potentials. This effect

helps undirected models overcome the label-bias problem (see Section 4.1.2).

2.2.3 Inference

Probabilistic inference is the process of computing probability distributions of the form

p(yF |yE) where yF and yE are disjoint sets of random variables. The set yE is the evidence:

it contains observed values of the random variables indexed by E and can be empty. In
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most cases, we are interested in one of several possibilities: the marginal distribution of

each node, the pairwise marginals, or the probability of a joint configuration. In some

cases, we might also want to find a joint configuration which has maximal probability.

In order to simplify the discussion, we restrict the discussion to undirected graphical

models. The directed models that we consider can be converted to undirected models

by dropping the directions on the edges and defining the potentials to be the conditional

distributions in the factorization implied by the Bayes net. Evidence is incorporated by

defining evidence potentials. If the observed value of a node yi is denoted by ȳi, the

evidence potential φE(yi) is defined to be:

φE(yi) =


φ(yi)δ(yi, ȳi) i ∈ E,

φ(yi) i /∈ E.

(2.3)

The marginal distribution of a node yi can be computed naively by

p(yi) =
∑
y1

· · ·
∑
yi−1

∑
yi+1

· · ·
∑
yT

p(y1, . . . , yT )

=
1

Z

∑
y1

· · ·
∑
yi−1

∑
yi+1

· · ·
∑
yT

∏
c

φc(yc). (2.4)

This summation requires O(|Y|T ) time. In many cases, we can exploit the structure of

the graph to reduce the time complexity, using exact methods such as the junction tree

algorithm [12]. We describe one method, the belief propagation (BP) algorithm1. BP is

equivalent to the junction tree algorithm for certain classes of graphs. BP is an iterative

algorithm where, at each iteration, messages are sent across edges according to a message

passing schedule. The message from vertex j to vertex i at value yi is given by:

mji(yi) =
∑
yj

φE(yi)φ(yi, yj)
∏

k∈N (j)\i

mkj(yj) (2.5)

where N (j) denotes the set of all neighbours of node yj. To avoid numerical problems,

the messages are normalized at each step. Writing α as the normalization constant, the

1BP on tree structures is also known as the sum-product algorithm; on chain structures it is often
referred to as the forward-backward algorithm.
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message is

mji(yi) = α
∑
yi

φE(yi)φ(yi, yj)
∏

k∈N (j)\i

mkj(yj). (2.6)

The marginal distribution of a node can be computed using all incoming messages:

p(yi) = αiφ
E(yi)

∏
k∈N (i)

mki(yi). (2.7)

The pair-wise marginals of two nodes connected by an edge can also be easily computed:

p(yi, yj) = αijφ(yi, yj)
∏

k∈N (i)\j

mki(yi)
∏

k∈N (j)\i

mkj(yj). (2.8)

If the graph is a tree, the schedule obtained by running Algorithm 2.1 can be used to com-

pute the exact marginals of all of variables in one iteration. This process takes O(|E||Y|2)

time. The likelihood of a joint configuration can be computed by first collecting all mes-

sages to the root and then dividing by the product of the normalization constants. If

the root node is unobserved, one must sum over its possible values before doing the di-

vision. If the graph is not a tree (a polytree or a more general graph), methods like the

elimination algorithm or the junction tree algorithm may be used to compute marginals

exactly. In cases where exact methods are intractable, approximate marginals can be

computed using techniques such as Gibbs sampling. See Jordan [12] for more details.

Most structures that we consider in this work are trees so BP can be used as the inference

algorithm.

The process of finding the probability of the most likely, or maximum a posteriori

(MAP), configuration is called the max-product algorithm and is a slight variation on

standard BP. The summation in Equation 2.6 is replaced by max:

mji(yi) = α max
yi

φE(yi)φ(yi, yj)
∏

k∈N (j)\i

mkj(yj). (2.9)

A maximizing configuration can be recovered with very little extra work if the graph is

a tree or a polytree. While collecting to the root, the values that give the maximum are

recorded. If the root is unobserved, the value that gives its maximum is also recorded.
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function TreeSchedule(G)
f ← ChooseRoot(G) . user-defined function
s← 〈〉
for all e ∈ N (f) do . collect to the root

Collect(G,f ,e,s)
end for
for all e ∈ N (f) do . distribute to the leaves

Distribute(G,f ,e,s)
end for

end function

procedure Collect(G,i,j,s)
for all k ∈ N (j) \ i do

Collect(G,j,k,s)
end for
append (j, i) to s

end procedure

procedure Distribute(G,i,j,s)
append (i, j) to s
for all k ∈ N (j) \ i do

Distribute(G,j,k,s)
end for

end procedure

Algorithm 2.1: Generate a schedule for belief propagation on a tree

Instead of computing messages when distributing messages to the leaves, we trace the

values back using the maximum at the root as the initial value. This process is often

called Viterbi decoding.

2.2.4 Learning

Given a set D = {d1, . . . , dN} of IID data and model parameters θ, the likelihood function

L(θ;D) is defined to be

L(θ;D) = p(D|θ)

=
N∏

i=1

p(di|θ). (2.10)
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The log likelihood function is defined to be

`(θ;D) = log L(θ;D)

=
N∑

i=1

log p(di|θ). (2.11)

Maximum likelihood estimation (MLE) of parameters seeks to find the parameters θ?

that maximize the likelihood, or, equivalently, the log likelihood. In penalized ML or

maximum a posteriori (MAP) estimation2, `(θ;D)+ r(θ) is maximized with respect to θ.

The function r(θ) is a penalty term that biases the optimization toward simpler models in

order to reduce overfitting and improve generalization. The general strategy for finding

the parameters θ? is to write down the log posterior, take the derivatives with respect to

the parameters, set them to zero, and solve.

It is usually straight forward to find the optimal parameters for fully observed mod-

els. However, for models with latent variables, parameter estimation is more difficult.

Consider the log likelihood function

`(θ;D) =
∑

i

log p(di|θ)

=
∑

i

log
∑
H

p(di, H|θ). (2.12)

The parameters of the model are coupled since we have a sum inside of a log. There are

two general strategies for finding the parameters. The first is to maximize `(θ;D) directly

using numerical optimization techniques such as gradient descent. The second is to use

the expectation-maximization (EM) algorithm proposed by Dempster, Laird and Rubin

[6]. The EM algorithm is an iterative algorithm that alternates between two steps: the E

step, in which the missing data is “estimated”, and the M step, in which the parameters

are updated given the new data. Neal and Hinton [23] show that the E step constructs

a lower bound to the log likelihood and the M step optimizes the parameters to saturate

the bound, thus increasing the log likelihood on each iteration.

2Not to be confused with MAP configurations. The context will often make it clear which one is
meant.
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θ0 ← random
l0 ← `(θ0;D)
i← 0
repeat

compute p(h|dj, θi)∀j . E step
θi+1 ← arg maxθ `q(θ;D) . M step
li+1 ← `(θi+1;D)
i← i + 1

until change in l < tolerance

Algorithm 2.2: The expectation-maximization (EM) algorithm

If the values of the hidden variables were known, we could construct the complete log

likelihood `c(θ;Dc). However, since the Hi are unknown, we can take the expectation

of `c(θ;Dc) with respect to some distribution q(H) to obtain the expected complete log

likelihood:

`q(θ;D) =
∑

i

∑
H

q(H) log p(Yi, H|θ). (2.13)

It can be shown that the best choice for q(H) is p(H|di, θ) [23]. The EM algorithm is

summarized in Algorithm 2.2.

2.3 Product Models

A product of experts (POE) model [10] combines multiple “expert” distributions in a

multiplicative fashion to form a new distribution:

p(Y |θ) ∝
∏
m

pm(Y |θm) (2.14)

where m indexes the experts. Each expert can learn specific parts of a distribution.

By combining the experts by first multiplying and then re-normalizing, the resulting

distribution can be more peaked than the individual experts. Product models can be

quite powerful when experts contain latent variables. One of the most basic types of

product models with latent variables in the restricted Boltzmann machine (RBM) [29, 7]

in which an expert in a single latent random variable with connections only to the visible
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variables. It should be noted that individual experts do not need to be normalized since

the product needs to be renormalized anyways.

2.3.1 Inference

The joint probability 2.14 can be computed up to a constant since the normalization

factor can be quite difficult to evaluate. One useful property of POE models is that

the observed variables are conditionally independent given the values the latent variables

of the experts. Thus a block Gibbs sampler can be implemented and can be used to

efficiently compute approximate marginals.

2.3.2 Learning

Consider the derivative of the log of Equation 2.14 with respect to a parameter θm of the

mth expert:

∂ log p(Y |θ)
∂θm

=
∂ log pm(Y |θm)

∂θm

− 1∑
Y ′

∏
m pm(Y ′|θm)

∑
Y ′

∂
∏

m pm(Y ′|θm)

∂θm

=
∂ log pm(Y |θm)

∂θm

− 1∑
Y ′

∏
m pm(Y ′|θm)

∑
Y ′

∂ exp(
∑

m log pm(Y ′|θm))

∂θm

=
∂ log pm(Y |θm)

∂θm

− 1∑
Y ′

∏
m pm(Y ′|θm)

∑
Y ′

∏
m

log pm(Y ′|θm)
∂ log pm(Y ′|θm)

∂θm

=
∂ log pm(Y |θm)

∂θm

−
∑
Y ′

p(Y ′|θ)∂ log pm(Y ′|θm)

∂θm

. (2.15)

The last term in Equation 2.15 is the derivative of the log partition function. It is simply

the expectation of the derivative of the log probability of the mth expert with respect

to the model distribution. While it can be approximated by Markov chain Monte Carlo

(MCMC) methods, the chains often take a very long time to reach equilibrium and the

samples tend to be very noisy [11].

Maximizing the log likelihood of the observed data is equivalent to minimizing the

Kullback-Leibler (KL) divergence Q0‖Qθ between the data distribution Q0 and the model,
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Require: k ≥ 1
d? ← sample from Q0

i← 0
for i← 1, k do

compute pm(hm|d?, θ)∀m
h?

m ← sample from pm(hm|d?, θ)∀m
compute pm(d|h?

m, θ)∀m
d? ← sample from p(d|h?

1, . . . , h
?
M) =

Q
m pm(d|h?

m)P
d

Q
m pm(d|h?

m)

end for

Algorithm 2.3: Sample from Qk

or equilibrium, distribution Qθ. The derivative of Q0‖Qθ with respect to θm is

∂Q0‖Qθ

∂θm

=

〈
∂ log pm(d|θm)

∂θm

〉
Q0

−
〈

∂ log pm(d|θm)

∂θm

〉
Qθ

. (2.16)

To avoid taking samples from Qθ, the contrastive divergence (CD) procedure intro-

duced by Hinton [11] minimizes the difference between Q0‖Qθ and Qk‖Qθ, where Qk is

the distribution obtained by running an MCMC chain for k steps. The negative gradient

of the CD cost function is complicated as the derivate of Qk depends on the parame-

ters. However, based on extensive simulations, this dependence can be ignored [11]. The

approximate negative gradient is:

− ∂

∂θm

(Q0‖Qθ −Qk‖Qθ) ≈
〈

∂ log pm(Y |θm)

∂θm

〉
Q0

−
〈

∂ log pm(Y |θm)

∂θm

〉
Qk

. (2.17)

The CD learning rule is therefore

∆θm ∝
〈

∂ log pm(Y |θm)

∂θm

〉
Q0

−
〈

∂ log pm(Y |θm)

∂θm

〉
Qk

. (2.18)

A method for sampling from Qk is given by Algorithm 2.3. The contrastive divergence

learning algorithm is summarized in Algorithm 2.4.There are several issues associated with the CD learning algorithm. First, one needs

to set parameters such as the learning rate (η), the momentum (ρ), and the weight decay

rate (κ) by hand. Second, identifying when CD has converged is difficult given that the

CD cost function is difficult to compute. We train product models for a fixed number of

iterations.
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Require: k ≥ 1, n ≥ 1
θ ← random
for all m do

∆θm ← 0
end for
for i← 1, n do

for all d ∈ D do
dk ← k step reconstruction starting with data d

end for
for all m do

∆θm ← η
[

1
N

∑
d

∂ log pm(d|θ)
∂θm

− 1
N

∑
d

∂ log pm(dk|θ)
∂θm

− κθm

]
+ ρ∆θm

θm ← θm + ∆θm

end for
end for

Algorithm 2.4: The contrastive divergence learning algorithm

2.4 Feature-Based Representations

In this work, the potential functions in undirected models are based on features. That

is,

φ(yi,x) = exp{
∑

k

θkfk(yi,x)} (2.19)

φ(yi, yj,x) = exp{
∑

l

θlfl(yi, yj,x)} (2.20)

where θk is the weight for feature fk. The features f are defined to be

fi(y,x) = [[y = i]]g(x) (2.21)

fi,j(y, y′,x) = [[y = i]][[y′ = j]]g(x) (2.22)

where [[·]] is an indicator function that is one only when the given condition is true.

g(x) is an observation feature, a scalar function of the observations only. There are

many different types of observations features, including the features that pick out specific

dimensions, regular expressions features, and dictionary features. For example, if x is

numerical data, one observation feature could be gd(x) = xd. If x is a single token of

text, one might want a feature that is 1 when x is in a list of place names. In general,

observation features may be overlapping and non-independent, and may be complex
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functions that involve multiple parts of the observations. In this work, we assume that

that the raw observations have been pre-processed by a static set of observation features

to form the observations x.

In most applications of CRFs, the potential functions are fully parameterized with

respect to the number of values the variables can take on and the number of observation

features. For example, supposing that there are |X | observation features, an edge po-

tential linking two variables that can each take on |Y| distinct values will have |Y|2|X |

features. Since the features f are non-zero only for a specific configuration of the the

variables y, we can collect the features that are active for a configuration and re-write

the potential functions:

φ(yi = v,x) = exp{θv · x} (2.23)

φ(yi = v, yj = v′,x) = exp{θv,v′ · x}. (2.24)

2.5 Evaluation Metrics

When considering the performance of a model, one must consider how well it does with

respect to predicting each label. With respect to a specific label l, let A be the number

of true positives, B be the number of false negatives, C be the number of false positives,

and D be the number of true negatives. The per-label accuracy with respect to l is

defined as

labelAccuracy =
A + D

A + B + C + D
(2.25)

The number of tokens having label l is often small compared with the number of tokens

with other labels, and in our experience, models typically do quite well at predicting

negatives. That is, D is often quite high. Therefore, comparing performance based on

label accuracy can be difficult since the results can be quantitatively very close. Because

of this, we do not use per-label accuracy as a performance metric.
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The information retrieval community makes use of several other metrics: precision,

recall, and the F1 score. Precision is the fraction of tokens identified as l that really are

l.

P =
A

A + C
. (2.26)

Recall of a method is the number of true positives divided by the total number of positive

examples:

R =
A

A + B
. (2.27)

The F1 score, or F measure, is defined to be the harmonic mean of the precision and the

recall:

F1 =
2PR

P + R

=
2A

2A + B + C
. (2.28)

F1 is 1 when B = C = 0. It essentially measures the number of true positives compared

to the number of true positives plus mistakes, ignoring the number of true negatives.

The most common way of evaluating the performance of a sequence structure learning

method is per-sequence accuracy, which is defined to be the number of correctly labeled

tokens divided by the total number of tokens in a sequence:

accuracy(Y, Y ′) =

∑T
t=1[[yt = y′t]]

T
. (2.29)

When looking a sets of sequences, we can average the sequence accuracies and average

F1 scores. Another method is to look at the percentage of sequences classified correctly.

That is, the percentage of sequences whose accuracy is 1. This is a very coarse metric as

it gives no indication about the distribution of the accuracies over all of the sequences.

In the remainder of the work, we use the F1 score to compare the model performance

with respect to each label. We compare overall performance using average F1 scores,

per-sequence accuracies, and whole instance accuracies.
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Structure Learning

The goal of sequence labeling is to infer a sequence of labels Y = {y1, . . . , yT} given

a sequence of observations X = {x1, . . . , xT}. One method of labeling a sequence of

observations is to use a model, like the hidden Markov model (HMM), that assumes the

existence of a probabilistic finite state machine (FSM) which generates the data using

state specific observation distributions [26]. In most cases, the FSM is unobserved. In

sequence labeling tasks, however, the FSM is observed and the states are defined to be

the labels.

McCallum, Freitag and Pereira realized that generative models like the HMM are

not appropriate for sequence labeling tasks [19]. They provide two reasons. The first is

that in order to keep learning and inference tractable, generative models assume that the

observations are conditionally independent given the state of the system. However, it is

often beneficial to consider richer observations that include overlapping, non-independent

features. The second reason that they provide is that generative models maximize the

joint probability of the observations and the labels rather than the conditional distribu-

tion P (Y |X), which is what we’re interested in. This is clearly inappropriate when the

task is to infer a labeling given observations. To deal with these issues, they proposed

the maximum entropy Markov model (MEMM), a version of the HMM that models the

17
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conditional distribution p(Y |X) directly. Since their paper, most research in structure

learning has focused on discriminative models.

In this chapter, we present an overview of techniques for structure learning in the

discriminative framework. We also describe some of the common modeling issues and

provide some suggestions on how to deal with them. Model-specific details are given in

Chapters 4 and 5.

3.1 Basic Techniques

Sequence labeling is essentially a classification task, but what sets it apart from other

classification tasks is that the class labels are the labellings of entire sequences. Since

sequences can be of any length, the space of labellings is infinite. For this reason, and

because it is not clear how to deal with observations of different sizes, standard methods

cannot be applied directly. The simplest way to overcome these problems is to assume

that all observation-label pairs (xt, yt) are independent. Any number of well-known

techniques can be applied.

One problem with this method (and all other methods that we discuss) is that the

mapping from observations to labels may be ambiguous. That is, the observation xt may

not by itself provide enough information to accurately label yt. One way to address it

is to use augmented observation vectors x′t = [xt−m; . . . ;xt; . . . ;xt+n]. The additional

observations add context which essentially acts as short-term memory. However, as the

size of the context increases, the number of model parameters increases, and although

the increase is typically only linear in the dimension of xt, the number of parameters can

become unwieldy if xt is high dimensional. This can be a serious concern if the amount

of training data is limited. Choosing an appropriate context may be difficult: it may

be that it is unclear what the context should be or it may be that different labels or

locations in the sequences need different contexts.
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(a) A joint factorization. (b) A factorization that separates label in-

teractions from observations.

Figure 3.1: Factor graphs illustrating two methods for modeling pair-wise compatibilities.

Another, more fundamental, problem with the independence approximation is that

dependencies between adjacent labels, as well as larger scale structures present in the la-

bels, are ignored. Knowledge of these may help resolve ambiguities. Most existing models

look at pair-wise interactions between the labels at adjacent times and are therefore |Y|-

state finite automata. We refer to these types of models as fully observed temporal

models.

There are two ways of incorporating pair-wise, or first-order, label interactions. The

more widely used approach is to consider the pair-wise interactions as coupled with the

observations. The other approach is to consider the label interactions separately from the

observation-label mapping. Factor graphs of the two approaches are shown in Figure 3.1.

The former essentially classifies label pairs, while the latter amounts to locally correcting

estimates from an independent classifier; models typically have O(|Y|2+YX ) parameters.

The number of parameters needed when using the first method is O(Y2X ). If X is fairly

small, the increase in complexity is not great, but for larger X the increase may be

excessive and it may not necessarily lead to better performance. A recent study by Peng

and McCallum [24] showed only a minimal increase in performance when compared to

observation independent label interactions.

The types of structures present in real data are not limited to first-order structures.

Higher-order structures may also be present; however, these are harder to model, espe-

cially for fully observed state machines as their expressiveness is limited by the size of Y .
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There may also be input-dependent relations. For example, in entity recognition tasks,

words that are similar often have the same label. Sutton and McCallum [30] proposed a

model in which, based on the observations, extra pair-wise dependencies are added to a

temporal model. The addition of the extra dependencies increases the expressiveness of

the model at the expense of complexity. We do not consider such models in our work.

3.2 Temporal Latent State Models

One way of looking at the labeling problem is to assume that there is one system which

generates observations and another system that takes these observations and annotates

them. The original generative models assumed that generating system is described by

the labels. A labeling for a new sequence is produced by inferring the states of the

generating system. Discriminative models separate the two systems and they do not

model the generating one. Fully observed temporal models assume that the labeling

system is a state machine whose state space is the set of labels. While these types of

models have been used with some success, they are limited because the states of the

labeling system are confounded with the labels of the task being modeled. In particular,

it is difficult to represent higher-order structure unless the label space is expanded to

Yk and flexible variable-length memory is impossible unless state space is very large.

One difficulty with expanding the state space is that the number of model parameters

increases exponentially. It may be that some systems can only be modeled with an

infinite number of states.

The extensions of fully observed models that address these issues are temporal latent

state models. The state of the labeling system is modeled using unobserved random

variables ht ∈ H. A temporal latent state model with discrete state space H is an |H|

state finite automaton. Although it is usually the case that the labels are assumed to be

conditionally independent given the state ht, it is also possible to model pair-wise label
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constraints directly; we do not consider such models in this work as they can be difficult

to train.

While basic temporal latent state models are conceptually simple, it may be difficult

to choose an appropriate size of H of the latent space. In addition to prior domain

knowledge, methods such as cross-validation can be used to help make the decisions.

3.3 Template Models

Fully observed temporal models cannot represent higher-order structures in the labels

unless the label space is expanded. However, the resulting increase in model complexity

is exponential as all possible labellings must be considered, and it is often the case that

only a small subset of the possible higher-order structures are ever seen. One way to

address this problem is to use temporal models that assume the existence of a latent

FSM. Another approach is to use label features which encode particular patterns in

subsets of label variables. Label features are parameterized using a set of weights and

may match different groups of configurations depending on the settings of the weights.

They differ from features typically used in chain structured models in that they are not

necessarily fixed before training. Training a model with label features can involve learning

the weights for the label features. The label features thus learn what label structures are

present in the data. Label features were introduced by He, Zemel and Carreira-Perpiñán

[9] in the context of image labeling and have been used with success in that particular

domain.

The label features that we consider have the form of a restricted Boltzmann machine

(RBM) [7]. Each feature consists of one binary latent random variable. When the variable

is turned on, it induces a probability distribution over some subset of label variables; when

it is off, no information is provided regarded the labeling. These features are replicated

across entire sequences to in order to produce complete labellings.
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Template models are attractive because they can efficiently represent large spaces

of structures. However, there are some issues that a modeler must address, such as

the kind and number of label features to use. As with temporal latent state models,

cross-validation or domain knowledge may be used.

In the following two chapters, we will give detailed descriptions of several temporal

models and one type of template model.
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Temporal Models

The most popular methods for modeling sequential data are chain structures that capture

interactions between adjacent label nodes. The chains gives a sense of causality, where

a label at time t depends on the label at time t − 1. For this reason, we refer to these

models as temporal models. They have natural interpretations as kinds of finite state

machines, are easy to implement, and often work quite well in practice. There are two

broad classes of models: fully observed models and latent state models.

In this chapter, we detail several different kinds of temporal models, starting with

logistic regression. We discuss the maximum entropy Markov model and its undirected

cousin, the conditional random field. For both, we consider two variations: one in which

the label interactions depend on the input and one where they do not. We also discuss

two latent state models, the input output hidden Markov model and the hidden random

field.

4.1 Fully Observed Models

Fully observed models have no latent variables. In this section, we present three such

models: logistic regression, the maximum entropy Markov model, and the conditional

random field. Logistic regression treats the label variables as independent whereas the

23
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other two link adjacent label variables together to form a chain structure.

4.1.1 Logistic Regression

Logistic regression (LR) models the conditional probability p(yt|xt) directly using either

the logistic function (for binary classification) or the softmax function (for multinomial

classification). We describe the latter since most problems involve more than two labels.

The softmax model is

p(yi = k|xi) =
exp{θk · xi + bk}∑
k′ exp{θk′ · xi + bk′}

=
exp{θ′k · x′i}∑
k′ exp{θ′k′ · x′i}

(4.1)

where θ′k = [θk; bk] and x′i = [xi; 1].

The log likelihood of a set D = {(y1, x1), . . . , (yN , xN)} of data is

`(Θ;D) =
N∑

i=1

log p(yi|xi)

=
N∑

i=1

|Y|∑
k=1

[[yi = k]] log p(y = k|xi) (4.2)

where the indicator functions [[yi = k]] are the class labels in a one-hot encoding of class.

The parameters are estimated using either MLE or MAP estimation. The most common

regularizer is weight decay, which is equivalent to putting a spherical Gaussian prior on

the model parameters:

r(Θ) = − 1

2σ2
||Θ||2 (4.3)

where Θ is a vector containing all parameter vectors θ′k stacked together. Several methods

can be used to learn the parameters including iteratively re-weighted least squares (IRLS).

Since the dimensionality of the observations can be quite large, computing and storing

the inverse Hessian is impractical. We use the L-BFGS memory-limited BFGS optimizer

[33] written by Zhu et al.1 to train our models. See Jordan [12] and Hastie et al. [8] for

1Available from http://www.ece.northwestern.edu/∼ciyou/code/lbcode.html.

http://www.ece.northwestern.edu/~ciyou/code/lbcode.html
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y1 y2 yT

x1 x2 xT

y0

Figure 4.1: Graphical model for the MEMM.

more details on logistic regression and on how to train logistic regression models.

4.1.2 Maximum Entropy Markov Models

A maximum entropy Markov model (MEMM) [19] assumes Markovian structure of the

labels variable yt:

p(Y |X) =
T∏

t=1

p(yt|yt−1,xt) (4.4)

where an additional dummy state y0 = start is used to avoid boundary conditions. The

graphical model corresponding to the MEMM factorization is shown in Figure 4.1.

The standard MEMM parameterizes the compatibility, or transition, probability with

a softmax model:

p(yt = i|yt−1 = j,xt) ∝ exp{θij · xt}. (4.5)

One way of looking at this is that there are |Y|+ 1 logistic regression classifiers, one for

each k ∈ Y ∪ {start}.

One way of parameterizing the transition distribution in a MEMM model in which

the transitions weights do not depend on the input is the following:

p(yt = i|yt−1 = j,xt) ∝ p(yt = i|xt)p(yt = i|yt−1 = j). (4.6)

The distribution p(yt = i|xt) is modeled using the softmax function. For convenience, we

represent the transition probabilities in an exponential form:

p(yt = i|yt−1 = j) ∝ exp{θij}. (4.7)
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for k ∈ Y ∪ {start} do
Dk ← all (xt, yt) with yt−1 = k.
Θk ← train a logistic regression classifier using Dk.

end for

Algorithm 4.1: Train a Maximum Entropy Markov Model

Therefore,

p(yt = i|yt−1 = j,xt) ∝ exp{θi · xt + θij}. (4.8)

We refer to this second model as the IMEMM. Dropping the initial state y0, the complete

factorization of the IMEMM is

p(Y |X) = p(y1|x1)
T∏

t=2

p(yt|yt−1,xt). (4.9)

The MEMM and the IMEMM are appropriate models when there is a Markovian

relationship between the labels. However, the MEMM suffers from the “label bias” prob-

lem described by Bottou [5]. In general, low entropy transition distributions effectively

ignore input, and if there is a slight imbalance in the training data with respect to the

true data distribution, the model may perform poorly because of bias introduced by the

skewed data.

Inference Inference in both the MEMM and the IMEMM is straight-forward since the

models are trees. One can efficiently compute all of the marginals using belief propaga-

tion. Computing the probability of the most-likely label sequence and finding a sequence

which achieves the maximum can be also be done efficiently by using the max-product

algorithm.

Training Since a MEMM is in essence just a collection of linear regression models,

training is especially simple. Algorithm 4.1 describes the algorithm used for training a

MEMM. The logistic regression models typically include a regularization term like the

one described in Section 4.1.1.
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Training an IMEMM is a bit more difficult than training a standard MEMM since

the observation and transition parameters are coupled, but numerical methods can still

be used. Let

ηt(i) =


θi · xt t = 1,

θi · xt + θi,yt−1 t 6= 1.

(4.10)

µt(i) =
exp{ηt(i)}∑
j exp{ηt(j)}

. (4.11)

Then

∇θi
ηt(i) = xt (4.12)

∂µt(i)

∂ηt(j)
= µt(i)[δ(i, j)− µt(j)]. (4.13)

The log likelihood of a set of data is

`(θ;D) =
N∑

i=1

log p(Yi|Xi)

=
N∑

i=1

[log p(y
(i)
1 |x

(i)
1 ) +

Ti∑
t=1

log p(y
(i)
t |x

(i)
t )]. (4.14)

The gradient of Equation 4.14 with respect to θi is

∇θj
`(θ;D) =

N∑
i=1

Ti∑
t=1

1

µt(y
(i)
t )
∇θj

µt(y
(i)
t )

=
N∑

i=1

Ti∑
t=1

[δ(y
(i)
t , j)− µt(j)]xt. (4.15)

The partial derivative of Equation 4.14 with respect to θjk is

∂ log `(θ;D)

∂θjk

=
N∑

i=1

Ti∑
t=2

1

µt(y
(i)
t )

∂µt(y
(i)
t )

∂θjk

=
N∑

i=1

Ti∑
t=2

[δ(y
(i)
t , j)− µt(j)]δ(y

(i)
t−1, k). (4.16)

4.1.3 Conditional Random Fields

Conditional random fields (CRFs), or more precisely linear chain CRFs, were introduced

by Lafferty, McCallum, and Pereira [16]. They are undirected versions of MEMMs and
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Figure 4.2: Graphical model for the CRF.

have been used extensively in structure learning tasks. Many variations on standard

CRFs, including skip-chain CRFs [30], semi-Markov CRFs [27], and undirected versions

of several directed models including factorial HMMs and hierarchical HMMs [31], have

been proposed, but we focus on linear chain CRFs as they are the most widely used

of all of the variants. Following the literature, the term CRF will refer to linear chain

conditional random fields unless otherwise stated.

The linear chain CRF (Figure 4.2) makes the Markov assumptions with respect to

the label variables. In particular, yt is conditionally independent of all other labels given

its neighbours yt−1 and yt+1. Usually, only edge potentials are considered:

p(Y |X) =
1

Z(X)

T∏
t=1

φ(yt, yt−1,xt)

=
1

Z(X)

T∏
t=1

exp{θyt,yt−1 · xt}. (4.17)

We can also split the edge potentials into potentials on both the edges and the nodes.

The edge potentials do not even have to depend on the observations:

p(Y |X) =
1

Z(X)

T∏
t=1

φ(yt, yt−1)φ(yt,xt)

=
1

Z(X)

T∏
t=1

exp{θyt,yt−1 + θyt · xt}. (4.18)

This parameterization is the undirected equivalent of the IMEMM; we refer to it as the

ICRF.
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The CRF does not suffer from the label-bias problem like the MEMM due to the

global normalization property which effectively allows the CRF to look at past labels

and future labels [14, 16].

Inference Since the models are trees, all marginals can be computed using belief prop-

agation, and there exist very fast implementations of the sum-product algorithm based

on matrix multiplication [16, 32]. Computing the probability of the most likely label

sequence and finding a sequence which achieves that maximum can be done with the

max-product algorithm.

Training As CRFs are fully observed undirected graphical models, there exist many

training methods, including GIS, IIS, FIS, gradient descent, conjugate gradient methods,

and second-order methods. Based on some extensive empirical studies of methods for

training maximum entropy models by Malouf [17], most CRF implementations use quasi-

Newton methods such as L-BFGS [33].

Our CRF implementation also uses L-BFGS to optimize the parameters. Both the

log likelihood and its gradient are required. We also incorporate a Gaussian-like penalty

term r(Θ) = − 1
2σ2 ||Θ||2. In this section, we show the log likelihood of the CRF and the

gradient of the log likelihood with respect to a parameter vector. The log likelihood of

the ICRF and its gradient are similar.

The log likelihood of the CRF is

`(Θ;D) =
N∑

i=1

log p(Yi|Xi) + r(Θ)

=
N∑

i=1

Ti∑
t=1

θ
y
(i)
t ,y

(i)
t−1
· x(i)

t −
N∑

i=1

log Z(Xi) + r(Θ). (4.19)

Let mi,t,j be an indicator variable that is 1 if and only if y
(i)
t = j. The log likelihood can

be re-written as

`(Θ;D) =
N∑

i=1

Ti∑
t=1

|Y|∑
j=1

|Y|∑
k=1

mi,t,jmi,t−1,kθjk · x(i)
t −

N∑
i=1

log Z(Xi) + r(Θ). (4.20)
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The gradient with respect to θjk is

∇θjk
`(Θ;D) =

N∑
i=1

Ti∑
t=1

mi,t,jmi,t−1,kx
(i)
t −

N∑
i=1

∇θjk
log Z(Xi)−

θjk

σ2
. (4.21)

The gradient of the log partition function with respect to θjk is

∇θjk
log Z(Xi) =

1

Z(Xi)

∑
Y

exp

{
Ti∑

t=1

θ
y
(i)
t ,y

(i)
t−1
· x(i)

t

}
Ti∑

t=1

mt,jmt−1,kx
(i)
t

=
∑
Y

p(Y |Xi)

Ti∑
t=1

mt,jmt−1,kx
(i)
t

=

Ti∑
t=1

x
(i)
t

∑
Y

p(Y |Xi)mt,jmt−1,k

=

Ti∑
t=1

x
(i)
t

|Y|∑
j′=1

|Y|∑
k′=1

mt,jmt−1,k

∑
{Y |yt=j′,yt−1=k′}

p(Y |Xi)

=

Ti∑
t=1

x
(i)
t

|Y|∑
j′=1

|Y|∑
k′=1

mt,jmt−1,kp(yt = j, yt−1 = k|Xi)

=

Ti∑
t=1

x
(i)
t p(yt = j, yt−1 = k|Xi). (4.22)

Therefore,

∇θjk
`(Θ;D) =

N∑
i=1

Ti∑
t=1

[mi,t,jmi,t−1,k − p(yt = j, yt−1 = k|Xi)]x
(i)
t −

θjk

σ2
. (4.23)

4.2 Latent State Models

Chain structured latent state models are one way of capturing complex sequential struc-

tures. Like fully observed models they can be interpreted as finite automata, but whereas

the states of the machine and the labels were coupled in MEMMs and CRFs, latent state

model separate the two: the latent states become the states of the machine, and a dis-

tribution over labels is associated with each of them. While their expressiveness is no

longer linked to the number of labels, it is restricted by the number of latent states, the

choice of which imposes a burden on the modeler. Unlike fully observed models, latent
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state models are not convex and have local optima, which makes training more complex

as multiple restarts typically have to be done in order to find a reasonable solution. In

this section, we review two latent state models: the input output hidden Markov model

(IOHMM) and the hidden random field (HRF).

4.2.1 Input Output Hidden Markov Models

The IOHMM (Figure 4.3) was originally proposed by Bengio and Frasconi as an exten-

sion of the HMM to include both inputs and outputs [4]. The model has mainly been

used in speech and gesture recognition, financial time series prediction, and sequence

classification [3].

h1 h2 hT

x1 x2 xT

y1 y2 yT

h0

Figure 4.3: Graphical model for the IOHMM.

In addition to the observations X and the labels Y , there exists a set of latent vari-

ables H = {h1, . . . , hT} which are given a Markovian structure. The label variables are

conditionally independent given H. The probability of a sequence under an IOHMM is

p(Y |X) =
∑
H

T∏
t=1

p(ht|ht−1,xt)p(yt|ht,xt). (4.24)

The transition distributions have traditionally been modeled by feed-forward neural net-

works. We consider transition distributions p(ht|ht−1,xt) parameterized by softmax func-

tions:

p(ht = j|ht−1 = k,xt) ∝ exp{λjk · xt}. (4.25)
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The emission distributions are also characterized by softmax functions:

p(yt = j|ht = k,xt) ∝ exp{θjk · xt}. (4.26)

Inference All marginals can be computed using belief propagation. Computing the

probability of the most-likely label sequence and finding a sequence which achieves the

maximum can be done with the max-product algorithm.

Training The EM algorithm to learn the parameters since the model contains latent

variables. The log likelihood of a set of sequences D = {(X1, Y1), . . . , (XN , YN)} is

`(Θ;D) =
N∑

i=1

log p(Yi|Xi)

=
N∑

i=1

∑
Hi

log p(Yi, Hi|Xi)

=
N∑

i=1

∑
Hi

Ti∑
t=1

[
log p(y

(i)
t |h

(i)
t ,x

(i)
t ) + log p(h

(i)
t |h

(i)
t−1,x

(i)
t )

]
. (4.27)

Let mi,t,j be an indicator random variable that is 1 if and only if h
(i)
t = j. The complete

log likelihood for a complete data set Dc = {(X1, Y1, H1), . . . , (XN , YN , HN)} is

`c(Θ;Dc) =
N∑

i=1

log p(Yi, Hi|Xi)

=
N∑

i=1

Ti∑
t=1

[
log p(y

(i)
t |h

(i)
t ,x

(i)
t ) + log p(h

(i)
t |h

(i)
t−1,x

(i)
t )

]
=

N∑
i=1

Ti∑
t=1

log p(y
(i)
t |h

(i)
t ,x

(i)
t ) +

N∑
i=1

Ti∑
t=1

log p(h
(i)
t |h

(i)
t−1,x

(i)
t )

=
N∑

i=1

Ti∑
t=1

|H|∑
j=1

mi,t,j log p(y
(i)
t |h = j,x

(i)
t )

+
N∑

i=1

Ti∑
t=1

|H|∑
j=1

|H|∑
k=1

mi,t,jmi,t−1,k log p(h = j|h′ = k,x
(i)
t ). (4.28)

Since the variables mi,t,j are unknown, we can take the conditional expectation of Equa-

tion 4.28 with respect to the posterior distribution q = p({Hi}Ni=1|D). Using linearity of
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expectation, we get

E[`c(Θ;Dc)|D]q =
N∑

i=1

Ti∑
t=1

|H|∑
j=1

E[mi,t,j|D]q log p(y
(i)
t |h = j,x

(i)
t )

+
N∑

i=1

Ti∑
t=1

|H|∑
j=1

|H|∑
k=1

E[mi,t,jmi,t−1,k|D]q

· log p(h = j|h′ = k,x
(i)
t ) (4.29)

where the expectations

E[mi,t,j|D]q = p(mi,t,j = 1|D)

= p(h
(i)
t = j|Yi, Xi) (4.30)

E[mi,t,jmi,t−1,k|D]q = p(mi,t,j = 1, mi,t−1,k = 1|D)

= p(h
(i)
t = j, h

(i)
t−1 = k|Yi, Xi) (4.31)

can be computed during the E step of EM.

Collecting together the terms in Equation 4.29 that depend on θj = {θ1j, . . . ,θ|Y|j},

we have:

J(θj) =
N∑

i=1

Ti∑
t=1

p(h
(i)
t = j|Yi, Xi) log p(y

(i)
t |h = j,x

(i)
t ). (4.32)

The problem of finding the optimal θj using MLE is a weighted logistic regression prob-

lem. Each data point (y
(i)
t ,x

(i)
t ) has an associated weight p(h

(i)
t = j|Yi, Xi) since the

true latent state is not known. There are many methods to efficiently find the param-

eters including the weighted IRLS algorithm described by Jordan and Jacobs [13] and

quasi-Newton methods.

Considering the optimization of the parameters λk = {λ1k, . . . ,λ|H|k}, we can collect

the terms in Equation 4.29 that depend only on λk:

J(λk) =
N∑

i=1

Ti∑
t=1

|H|∑
j=1

p(h
(i)
t = j, h

(i)
t−1 = k|Yi, Xi) log p(h = j|h′ = k,x

(i)
t ). (4.33)

Using the fact that

p(h
(i)
t = j, h

(i)
t−1 = k|Yi, Xi) = p(h

(i)
t = j|h(i)

t−1 = k, Yi, Xi)p(h
(i)
t−1 = k|Yi, Xi) (4.34)
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Figure 4.4: Graphical model for the HRF.

we can rewrite Equation 4.33:

J(λk) =
N∑

i=1

Ti∑
t=1

p(h
(i)
t−1 = k|Yi, Xi)

·
|H|∑
j=1

p(h
(i)
t = j|h(i)

t−1 = k, Yi, Xi) log p(h = j|h′ = k,x
(i)
t ). (4.35)

The optimization of λk is also a weighted logistic regression problem. The posterior

probabilities p(h
(i)
t = j|h(i)

t−1 = k, Yi, Xi) replacing the class labels of Equation 4.2 since

the true class of each data point is not known. The conditional probabilities p(h
(i)
t =

j|h(i)
t−1 = k, Yi, Xi) can be computed easily after the E step has been run:

p(h
(i)
t = j|h(i)

t−1 = k, Yi, Xi) =
p(h

(i)
t = j, h

(i)
t−1 = k|Yi, Xi)

p(h
(i)
t−1 = k|Yi, Xi)

. (4.36)

Since the process of optimizing the parameters of logistic regression and weighted

logistic regression models is iterative and can take some time to converge, the optimiza-

tion procedures in the E step are often run for a fixed number of steps rather than to

convergence.

4.2.2 Hidden Random Fields

The HRF (Figure 4.4) was introduced by Kakade, Teh and Roweis [14], and can be viewed

as an undirected version of the IOHMM. The Markov assumption is made regarding the

latent nodes and each label node is conditionally independent of all other nodes given its
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associated latent node. The factorization of the joint distribution is

p(Y |X) =
∑
H

p(Y,H|X)

=
1

Z(X)

∑
H

T∏
t=1

φ(ht, ht−1,xt)φ(yt, ht,xt)

=
1

Z(X)

∑
H

T∏
t=1

exp{λht,ht−1 · xt + θyt,ht · xt}. (4.37)

Inference All marginals can be computed using belief propagation. The probability of

the most likely label sequence and a sequence which achieves it can be found efficiently

by using the max-product algorithm.

Training Since the state variables in the HRF are latent, we can use the EM algorithm

to learn the parameters. The log likelihood is

`(Θ;D) =
N∑

i=1

log p(Yi|Xi)

=
N∑

i=1

log
∑
Hi

p(Yi, Hi|Xi)

=
N∑

i=1

log
∑
Hi

Ti∏
t=1

φ(h
(i)
t , h

(i)
t−1,x

(i)
t )φ(y

(i)
t , h

(i)
t ,x

(i)
t )−

N∑
i=1

log Z(Xi). (4.38)

Let mi,t,j be an indicator random variable that is 1 if and only if h
(i)
t = j. The complete

log likelihood is

`c(Θ;Dc) =
N∑

i=1

log

Ti∏
t=1

φ(h
(i)
t , h

(i)
t−1,x

(i)
t )φ(y

(i)
t , h

(i)
t ,x

(i)
t )−

N∑
i=1

log Z(Xi)

=
N∑

i=1

Ti∑
t=1

|H|∑
j=1

|H|∑
k=1

mi,t,jmi,t−1,kλjk · x(i)
t

+
N∑

i=1

Ti∑
t=1

|H|∑
j=1

mi,t,jθy
(i)
t j
· x(i)

t −
N∑

i=1

log Z(Xi). (4.39)
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Taking the conditional expectation of Equation 4.39 with respect to the posterior distri-

bution q = p({Hi}Ni=1|D) we get

`q(Θ;D) =
N∑

i=1

Ti∑
t=1

|H|∑
j=1

|H|∑
k=1

E[mi,t,jmi,t−1,k|D]qλjk · x(i)
t

+
N∑

i=1

Ti∑
t=1

|H|∑
j=1

E[mi,t,j|D]qθy
(i)
t j
· x(i)

t −
N∑

i=1

log Z(Xi) (4.40)

where

E[mi,t,j|D]q = p(h
(i)
t = j|Yi, Xi) (4.41)

E[mi,t,jmi,t−1,k|D]q = p(h
(i)
t = j, h

(i)
t−1 = k|Yi, Xi). (4.42)

These expectations are computed in the E step. The M step involves optimizing a fully-

observed CRF. The following gradients need to be computed:

∇λjk`q(Θ;D) =
N∑

i=1

Ti∑
t=1

[E[mi,t,jmi,t−1,k|D]q − p(h
(i)
t = j, h

(i)
t−1 = k)]x

(i)
t (4.43)

∇θjk`q(Θ;D) =
N∑

i=1

Ti∑
t=1

[δ(y
(i)
t , j) E[mi,t,k|D]q − p(y

(i)
t = j, h

(i)
t = k)]x

(i)
t (4.44)

As with the IOHMM, it can take a long time for the optimization of the parameters in

the M step to converge so we usually only do a fixed number of steps.

4.3 Discussion

In this chapter, we have covered several temporal models: logistic regression, MEMMs,

CRF, IOHMMs, and HRFs. Logistic regression is the most basic of the five, assuming

the independence of all items in a sequence. It is a conditional model so it can make

full use of features to capture some structure in the observations; however, it cannot

model structure between labels. Inference is relatively inexpensive compared to the more

complex models, taking roughly O(|Y||X |T ) time for an entire sequence.

Chain structured models like the MEMM and the CRF that link the label variables

are the most commonly used models. In essence, they introduce soft contraints between
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adjacent labels which may be either dependent on the observations or independent. The

MEMM is a directed graphical model whereas the CRF is undirected. The latter is

the preferred model as the global normalization allows features at different parts of the

chain to compete directly against each other, thus helping to overcome some of the

problems of the MEMM, namely the label-bias problem. Inference in a MEMM and

a CRF takes O(|Y|2(T + |X |)); the |Y|2|X | term is the time required to compute the

transition matrices. Computing the likelihood of a CRF is more expensive because it

requires the normalization constant to be computed.

MEMMs and CRFs are all fully observed models. In contrast, the IOHMM and the

HRF are latent state models. The latent states are arranged in a chain structure; the

label variables depend only on the current observations and the current latent state. The

power of these models comes from the fact that labels and state are decoupled. While

for some problems, it may be clear what the number of latent states should be, the

choice may be more difficult for complex tasks. The IOHMM is a directed model; the

HRF is its undirected equivalent. Computing marginals in IOHMM and HRF models

takes O(|H|2T + |H|2|X |T + |Y||H||X |T ) time. Computing the likelihood takes roughly

the same time for IOHMMs, but for HRFs, the normalization constant also needs to

be computed. While the IOHMM and the HRF have can have more capacity than the

MEMM and CRF, it may be the case that for some problems the extra time needed to

choose the number of states and train the model is not worth the gain in performance

when compared to a fully observed model.



Chapter 5

Template Models

Traditional CRFs make extensive use of fixed feature functions. Ignoring observations

and considering groups of n labels, there is one feature for each element of

Y × Y × · · · × Y︸ ︷︷ ︸
n times

.

The number of features is exponential in n. For example, if the cardinality of Y is 10,

a not unreasonable value, incorporating fourth-order features requires the addition of

10000 features and weights to the model. This is clearly wasteful given that most of the

configurations will likely never be seen. To avoid overfitting, ever increasing amounts of

training data are needed.

An alternative approach is to model higher-order structures by using parameterized

features that detect sets of patterns. These features can be thought of as templates.

In this chapter, we examine one type of template model, the RBM-CRF, which uses

restricted Boltzmann machines (RBMs) [7] to represent the features. The RBM-CRF

was proposed by He, Zemel, and Carreira-Perpiñán [9] in the context of multi-scale

CRFs for image segmentation.

38
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5.1 The RBM-CRF Model

A label feature h is a latent binary random variable that is connected to J label variables.

Let g =
〈
ng,og, {Wg,n}ng

n=1,bg

〉
be a group that defines a set of ng label features whose

connectivity is given by the vector og of offsets; all label features in a group have the

same connectivity. The Wg,n = [wg,n,1, . . . ,wg,n,|og |] are weight matrices where wg,n,j is

the vector of weights between label feature n and the label variable at offset j. bg =

[bg,1; . . . ; bg,|og |] is a vector of biases.

The offset vector og does not specify the exact label variables in a sequence that the

label features are connected to; rather, it is used to specify which label variables the label

feature is connected to when the group is instantiated or replicated. The replication at

time t is given by g(t) =
〈
ng,og(t), {Wg,n}ng

n=1,bg

〉
where og(t) = og + t gives the indices

of the label variables that the label features in gt are connected to. The replications share

the same weights and biases so a group can be thought of as a collection of ng templates

which are replicated across a sequence. A group can only be replicated at a time t only

when all indices in og(t) specify valid label variables. When rolled out across an entire

sequence, the resulting model takes the form of an RBM, a bipartite undirected graphical

model. The node hg,n,r is the rth replication of node n of group g; it is connected to a

subset of the label variables in the sequence.

The joint probability of a sequence Y with respect to group g is given by

pg(Y, H) ∝ exp{
∑

r

∑
n

[bg,n +
∑

k

wg,n,k · lk]hg,n,r} (5.1)

=
∏

r

∏
n

exp{[bg,n +
∑

k

wg,n,k · lk]hg,n,r} (5.2)

=
∏

r

∏
n

p̃g,n,r(hg,n,r, Y ) (5.3)

where r indexes the replications, n indexes the latent variables in a replication, and k

indexes the label variables that a node hg,n,r is connected to. The value of label yk

is represented by the vector lk using a one-hot encoding. Suppose p̃g,n,r(hg,n,r, Y ) is
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normalized. Then

pg,n,r(hg,n,r, Y ) =
exp{[bg,n +

∑
k wg,n,k · lk]hg,n,r}∑

Y 1 + exp{[bg,n +
∑

k wg,n,k · lk]hg,n,r}
. (5.4)

The probability that a label variable yj takes on value v given hg,n,r is

pg,n,r(yj = v|hg,n,r) =
exp{[wg,n,k,vlk,v]hg,n,r}∑|Y|

v′=1 exp{[wg,n,k,v′lk,v′ ]hg,n,r}
(5.5)

where k is the index of yj with respect to hg,n,r, We can view hg,n,r as inducing a dis-

tribution over each label variable that it is connected to. If hg,n,r = 0, the distribution

that is induced is the uniform distribution; however, if hg,n,r = 1, the distribution that is

induced depends on the weight vector wg,n,k.

The likelihood of a sequence is easy to compute up to a constant:

pg(Y ) =
∑
H

pg(Y,H)

∝
∏

r

∏
n

∑
hg,r,n

exp{[bg,n +
∑

k

wg,n,k · lk]hg,n,r}

=
∏

r

∏
n

(1 + exp{bg,n +
∑

k

wg,n,k · lk}). (5.6)

An RBM-CRF is a collection of K groups G = {g1, . . . , gK} which are combined

multiplicatively. The resulting model is a product of experts:

p(Y ) ∝
K∏

k=1

pgk
(Y ). (5.7)

A simple RBM-CRF with two groups along with its instantiation on a sequence

of length four is shown in Figure 5.1. The groups are f = 〈nf = 2,of = [0; 1]〉 and

g = 〈ng = 1,og = [0; 1; 2]〉.

Inference It is very difficult to compute the exact marginals of the label features and

the label variables because the graphical model is loopy. However, it is very easy to

implement a Gibbs sampler to compute approximate marginals. Gibbs sampling is very
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(b) The RBM-CRF rolled out.

Figure 5.1: An example of a simple RBM-CRF.

efficient because of the structure of the graph. The label variables can be sampled in

parallel because they are conditionally independent given the label features. So

p(yj = v|H) =
p(yj = v, H)

p(H)

∝
∏

g

p̃g(yj = v, Hg)

=
∑
y−j

∏
g

p̃g(y−j, yj = v, Hg)

=
∑
y−j

∏
g

∏
rg ,ng

exp{hg,ng ,rg

∑
k

wg,ng ,rg ,k · lk}

p(yj = v|H) =
exp{

∑
g

∑
(rg ,k)=j

∑
ng

hg,ng ,rgwg,n,k,v}∑|Y|
v′=1 exp{

∑
g

∑
(rg ,k)=j

∑
ng

hg,ng ,rgwg,n,k,v′}
. (5.8)

The summation
∑

(rg ,k)=j is over replications of group g that contain yj (which will be

at offset k).

Similarly, the label features are conditionally independent given the label variables

so they can also be sampled in parallel. The posterior probability p(hg,n,r = 1|Y ) is,
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dropping the g subscripts for clarity,

p(hn,r = 1|Y ) ∝
∑

h−(n,r)

p(hn,r, h−(n,r), Y )

=
∑

h−(n,r)

exp{bn +
∑

k

wn,k · lk}
∏
r′,n′

exp{bn′ +
∑

k

wn′,k · lk}

= exp{bn +
∑

k

wn,k · lk}
∏
r′,n′

∑
hr′,n′

exp{bn′ +
∑

k

wn′,k · lk}

p(hn,r = 1|Y ) =
exp{bn +

∑
k wn,k · lk}

1 + exp{bn +
∑

k wn,k · lk}
. (5.9)

Training Training an RBM-CRF model using standard techniques like maximum like-

lihood is very difficult because of the normalization constant. However, because the

model is a product of experts, we can use contrastive divergence (see Section 2.3.2) to

train it. Each expert in an RBM-CRF model is an RBM, and an RBM is itself a product

of experts, each expert being one of the latent variables [11]. In order to calculate the

approximate CD gradient we need to know the derivative of log p̃g,n,r(Y ) with respect to

its parameters.

log p̃g,n,r(Y ) = log[1 + exp{bg,n +
∑

k

wg,n,k · lk}]

∇wg,n,k
log p̃g,n,r(Y ) =

exp{bg,n +
∑

k wg,n,k · lk}
1 + exp{bg,n +

∑
k wg,n,k · lk}

lk

= pg,n,r(hg,n,r = 1|Y )lk (5.10)

∂ log p̃g,n,r(Y )

∂bg,n

=
exp{bg,n +

∑
k wg,n,k · lk}

1 + exp{bn,k +
∑

k wg,n,k · lk}
= pg,n,r(hg,n,r = 1|Y ) (5.11)

The k-step reconstructions can be produced by, at each step, first sampling hg,n,r accord-

ing to Equation 5.9 and then sampling yj according to Equation 5.8.

5.2 Incorporating Observations

One issue that has been tacitly ignored so far is how to incorporate observations in an

RBM-CRF. There are a variety of ways of accomplishing this, and in this section, we
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outline three different methods.

The most basic method is to train a local classifier first and and then incorporate

it using a discount factor 0 < γ ≤ 1 to compensate for over-confident classifications.

Writing pI(Y |X) for the distribution produced by the local classifier and pRBM(Y ) for

the distribution produced by the RBM-CRF, the final model is

p(Y |X) ∝ pI(Y |X)γpRBM(Y ). (5.12)

This method might be good if the initial classifier is complex. A suitable value of γ must

chosen, however.

The second method is to train the local classifier at the same time as the RBM-CRF

model. For example, it is very easy to train a logistic regression classifier at the same

time as the other experts. The model is

p(Y |X) ∝ pI(Y |X)pRBM(Y ) (5.13)

where

pI(Y |X) =
T∏

t=1

pLR(yt|xt) (5.14)

pLR(yt|xt) =
exp{θyt · xt}∑|Y|
v=1 exp{θv · xt}

. (5.15)

In this scheme, γ is effectively trained based on the magnitudes of the weights since

pLR(yt|xt) ∝ exp{γθyt · xt}

= (exp{θyt · xt})γ. (5.16)

The gradient of the unnormalized log probability log p̃LR(yt|xt) with respect to the pa-
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rameter vector θi is

∇θi
log p̃(yt|xt) =

|Y|∑
v=1

[[yt = v]]∇θi
log p̃(y = v|xt)

=

|Y|∑
v=1

[[yt = v]]∇θi
θv · xt

=

|Y|∑
v=1

[[yt = v]]δ(v, i)xt

= lt,vxt. (5.17)

This is the scheme that we adopt for most of the models evaluated in Chapter 6.

Rather than incorporating a simple local classifier like logistic regression, one or more

latent-state temporal models, for example either IOHMMs or HRFs, can be used as

experts. These models would combine the flexibility of state-based models for variable

memory with the power of the RBM-CRF for recognizing larger structures. It is also

possible to incorporate a CRF model, but the direct label-to-label edges complicate

sampling as the label nodes can no longer be considered to be conditionally independent

given the latent variables.

The third method is to incorporate observations directly into the parameterization of

the label features (Figure 5.2). Such label features can then be used to map observations

to label configurations and are useful for tasks that require input dependent memory.

The joint distribution pg(Y,H) becomes a conditional distribution

pg(Y, H|X) ∝ exp{
∑

r

∑
n

[bg,n +
∑

j

θg,n,j · xj +
∑

k

wg,n,k · lk]hg,n,r}. (5.18)

In this approach, we basically learn a classifier with respect to the latent nodes. One

drawback of this approach is that it may be difficult to choose which observations should

be used for each label feature. Another issue is that the resulting model can have an

prohibitive number of parameters, especially if there are many label features. An alter-

native setup closer to standard CRFs is to have one label feature for each dimension of

the observation vector.
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x
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y

Figure 5.2: Input-dependent Label Features.

5.3 Discussion

The RBM-CRF model is a novel method of doing sequence labeling. With smaller scale

label features, it can be quite similar to a standard CRF model. Ignoring observations,

a feature in a stock CRF is active for a specific configuration of two label variables.

An RBM-CRF with a group of |Y| label features that look at adjacent label variables

can approximate the completely parameterized CRF. Each feature has a probability of

being active based on its weights and the current configuration. A label feature’s weights

can be adjusted so that there is high probability that it will be active for one specific

configuration and inactive for all others [7]. When it is active, it contributes a certain

amount to the numerator; when it is inactive, it contributes nothing. In terms of a CRF,

the contribution can be viewed as the scale factor θk.

The RBM-CRF is much more powerful than a CRF, especially when larger label

features are considered. A label feature can model more than one structure through the

probability distributions that it induces over label nodes that it is connected to. When

the label feature is off, it induces a uniform distribution; when it is on, the entropy of

each distribution dictates how the label node is matched. A high entropy distribution

indicates that the label feature doesn’t care what the label is since the probabilities for

each value are roughly equal. As the entropy decreases, the label feature becomes more

specific in what it is interested in through the relative probabilities of the different label

values. Considering all label nodes together, the label feature can be seen as carving out
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a region in the space of configurations that it matches. For this reason, it is not always

necessary to have a large number of label features. It should be noted that it is always

possible to include label features with fixed weights in an RBM-CRF model.

Structures of different lengths can be modeled by including parameterized features

that look at different numbers of label variables. This provides another degree of freedom

to the modeler – in addition to choosing arbitrary observation features, they can cus-

tomize the architecture of the model. However, significant amounts domain knowledge

may be needed to decide on how many experts to include and on what the connections

should be. Methods such as cross-validation may also be used to decide on how many

experts to include. CRFs and MEMMs can also be extended to incorporate higher-order

features, but as has been noted, the resulting increase in model complexity is exponential.

We expect the RBM-CRF to work well on problems where there is ambiguity in

groups of labels that can be resolved through context that is unavailable to standard

models because of their local nature. For example, in the Cora references data set

(see Section 6.4), there are several groups of tokens, such as title and book title, whose

observations can be quite similar. The boundaries of the groups are fairly easy to identify

and provide some of the context to help resolve the labeling of the interior observations.

A regular CRF may have difficulty disambiguating the interior of the groups because of

its local focus. An RBM-CRF with large enough label features will learn that groups of

title tokens appear to together and that groups of book title tokens also appear together.

Other, perhaps smaller, features, might learn that book title follows title. By putting the

label features together, the RBM-CRF should be able to properly label the ambiguous

observations. The RBM-CRF can be seen then as a mechanism to smooth out incorrect

predictions from some more limited classifier.

An IOHMM or an HRF may also be able to resolve ambiguity by using the latent states

to keep track of where it is in a sequence. The RBM-CRF does have some advantages

over the HRF. For example, the RBM-CRF can be used to model fixed-length memory
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easily. Consider a problem with binary labels where for a particular input, the output

depends on the output from 10 steps in the past. Both the IOHMM and the HRF would

require 1 +
∑10

n=1 2n states as all of the last 10 observations must be remembered. On

the other hand, an RBM-CRF model would only require a couple of experts to model

the memory. However, if the length of memory required is not fixed, the RBM-CRF will

not be able to model the data correctly because it maintains no state information.



Chapter 6

Experimental Results

In this chapter we present experimental results on a variety of data sets, investigating

issues such as ambiguous observations, larger scale structures, and memory.

Unlike most other models considered, the RBM-CRF is highly problem-dependent

in that the architecture can, and often does, change for different problems. It is also

possible to experiment with multiple architectures for a single problem. As such, we

describe the specific architectures that we investigate for a problem in the section that

details the problem. When referencing RBM-CRF architectures, we may use the same

name across several problems; however, the architectures referenced by the name will be

different for each problem.

At test time, labels were chosen using maximum marginals (logistic regression), ap-

proximate maximum marginals (RBM-CRF models), or Viterbi decoding (all other mod-

els). Per-label F1 scores, average F1 scores, average accuracy, and whole instance accu-

racy are used to compare trained models.

All models were implemented in MATLAB. Experiments were run on quad-CPU Intel

Xeon (2.4 GHz) machines with 4 GB of physical memory running Red Hat Linux 7.3 and

MATLAB 7 (R14).

48
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Observation Labels

1 A

2 B

3 C

4 Q

5 D,E

Table 6.1: Observation-label mapping for Toy Problem 1.

6.1 Toy Problem 1: Ambiguous Input

This problem illustrates the difficulty that many methods have in modeling data where

a label can depend on observations outside of its immediate context. The problem was

also designed to be difficult for the fully observed models by separating the ambiguity

from a disambiguating label by multiple time steps.

There are five observations {1, 2, 3, 4, 5} and six labels {A, B, C,D,E,Q}. The map-

ping from observations to labels, shown in Table 6.1, is mostly deterministic with the

exception of an ambiguity with observation 4, which can map either to D or to E. The

ambiguity can be resolved by using knowledge of the label structures present in the data:

continuous Qs, ABCD, and BCE. D and E only appear after a BC so the ambiguity

can be resolved when it is known whether or not an A precedes BC. Observation and

label sequences are generated from the state machine illustrated in Figure 6.1. State

S is the accepting state and does not generate any observations. The state transition

probabilities p(A|Q1) and p(B2|Q1) are equal.

This problem is difficult for all fully observed models because both the disambiguating

input and the disambiguating label are far from the ambiguous observation. The IOHMM

and the HRF should have no difficulty modeling the data as a three state FSM can model

the labeling process (Figure 6.2). RBM-CRF models with larger label features should be

able to learn the different structures.
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6.1.1 Setup

Both the training set and the test set consisted of 100 sequences of length 50. The

observations used at time t are just the raw observations (1, 2, 3, 4, or 5) in a one-hot

encoding so xt is 5-dimensional and xt,i = 1 iff the observation at time t is i. Given a

sufficiently large window over the observations, any of the standard methods can resolve

the ambiguity present in the data; however, it may not be possible to allow large windows

with real data so we kept the window small to simulate such conditions.

We trained all temporal models and three RBM-CRF models with different archi-

tectures (Table 6.2). All three had a group of label features that looked at sets of six

labels and differed only in the number of features in the group: RBM(1) had one feature,

RBM(2) had two, and RBM(3) had six. Each model incorporated a logistic regression

expert that was trained at the same time as the label features.

For the temporal models, we used simple weight decay with σ = 10 to control capacity.

This value of σ is common in CRF experiments; we did not use cross-validation to choose

it. For all models except the RBM-CRF ones, training was stopped when the relative

change in the log likelihood was less that 1× 10−6. All training runs were restarted five

times with different initial parameter settings in order to get an idea of average training

times, and, for the models with latent variables, to deal with problems of local optima.

Q

A

B

B C D

C E Q

S

Figure 6.1: Finite state machine used to generate the data for Toy Problem 1.
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Name Observation Model Label Features

RBM(1) LR (1, 0 : 5)

RBM(2) LR (2, 0 : 5)

RBM(3) LR (6, 0 : 5)

Table 6.2: Details of the RBM-CRF models used with Toy Problem 1. The notation

(n, a : b) is used to describe the number of label features (n) within the group and the

label variables that they are connected to (at offsets [a, b]).

The initial parameters were chosen at random from the interval [−1, 1]. The model that

performed best on the training data was the one used on the test data.

Because the dimensionality of the data is small, it was possible to use an imple-

mentation of IRLS to train the logistic regression classifier, although other methods like

conjugate gradients or BFGS could also have been used; the results should be the same

because the problem is convex. IRLS was also used as the logistic regression training

algorithm in the MEMM. The L-BFGS optimizer was used to optimize the IMEMM,

CRF, and the ICRF; it was also used during the M step of EM for the IOHMM and the

HRF.

The number of latent states used in the IOHMM and HRF models was three. For

both models, at most 100 iterations of optimization were done during the M step. The

total number of EM training iterations was limited to 100.

a

c

b

2/3/5

4
1

3/5

2
4

4

Figure 6.2: A finite state machine for Toy Problem 1.
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With respect to the RBM-CRF models, the learning rate was set to 0.1, the weight

decay was set to 1
σ2 , and a momentum of 0.9 was incorporated after 25 iterations. Three

reconstruction steps were done in the reconstruction phase of CD. All models were trained

for 100 iterations. 50 iterations of Gibbs sampling were done to compute the approximate

marginals for the RBM-CRF models at test time; none of the samples were discarded as

burn-in.

Method Mean Time (s) Standard Deviation

LR 3.0 × 101 8.6 × 100

MEMM 1.5 × 101 1.8 × 10−1

IMEMM 2.5 × 102 8.8 × 101

CRF 3.9 × 102 1.6 × 102

ICRF 1.2 × 102 3.9 × 101

IOHMM 2.2 × 103 2.2 × 102

HRF 3.2 × 103 4.2 × 103

RBM(1) 4.2 × 102 8.0 × 100

RBM(2) 9.5 × 102 1.0 × 102

RBM(3) 2.7 × 104 1.6 × 103

Table 6.3: Training times of the models averaged over five runs.

The mean training time of each model is shown in Table 6.3. The variance for the

HRF is large because the model seems to be very susceptible to local optima. During

training, it was observed that some runs were very short, only three to five iterations, and

other were much longer. For both the IOHMM and the HRF, it was observed that there

was typically an initial large decrease in log likelihood followed by a period of very slow

convergence. The initial decrease is likely the model learning observation-label weights.

With the IOHMM, a second sharp decrease can occur when the dynamics are learnt. The

HRF never had a large second decrease and never reached the 100 iteration limit. These

observations imply the HRF may be susceptible to local optima. We found that we could

improve performance by initializing the weights of the HRF with those of an IOHMM

that had been trained for a very small number of iterations. Although local optima are

still a problem, we were able to train an HRF that did model the data correctly. Doing

more random restarts during training could also help improve performance.
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LR MEMM IMEMM CRF ICRF IOHMM HRF RBM(1) RBM(2) RBM(3)

A 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.21

B 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.80

C 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D 0.00 0.00 0.00 0.00 0.00 100.00 100.00 99.19 99.60 97.23

E 66.49 66.49 66.49 66.49 66.49 100.00 100.00 99.19 99.60 96.67

Q 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98

Average F1 Score 77.75 77.75 77.75 77.75 77.75 100.00 100.00 99.73 99.87 98.82

Average Accuracy 97.52 97.52 97.52 97.52 97.52 100.00 100.00 99.96 99.98 99.80

Instance Accuracy 26.00 26.00 26.00 26.00 26.00 100.00 100.00 98.00 99.00 92.00

Table 6.4: Per-label F1 scores and overall performance results for the different models

on test data for Toy Problem 1.

6.1.2 Results

The results of running the trained models on the test data are shown in Table 6.4. All

models correctly, or almost correctly, labeled all As, Bs, Cs and Qs. As expected, most

were not able to distinguish between D and E. The training data contained 128 Ds and

145 Es so the best a model with limited information can do is to classify observation 4

as E. The IOHMM and the HRF were able to model the data perfectly.

All three RBM-CRF models did quite well. RBM(2) performed the best while

RBM(3) did slightly worse than RBM(1) and RBM(2). RBM(3) is a complex model

so the results may be due to inadequate training. The RBM-CRF models significantly

outperformed the fully-observed models, and RBM(1) and RBM(2) approached the level

of performance that the IOHMM achieved at a fraction of the training time.

Hinton diagrams of the weights learnt by the three RBM models are shown in Fig-

ure 6.3. The columns are the offsets and the rows are the labels. Because of the slight

imbalance between D and E labels in the training data, the logistic regression expert

classified input 4 as an E so the label feature of RBM(1) acts as a mechanism to correct

the bad classification that occurs when an A precedes the BC group. It is not known why

RBM(1) has two AD correctors, although it may be that overlaying a pattern at multiple

offsets may be more robust than just learning a pattern at a single offset since the label

feature will be active at more than one replication for a matching pattern in the sequence.



Chapter 6. Experimental Results 54

0 1 2 3 4 5

A

B

C

D

E

Q

Label Feature 1

Offset

La
be

l
(a) RBM(1)

0 1 2 3 4 5

A

B

C

D

E

Q

Label Feature 1

Offset

La
be

l

0 1 2 3 4 5

A

B

C

D

E

Q

Label Feature 2

Offset

La
be

l

(b) RBM(2)

0 1 2 3 4 5

A

B

C

D

E

Q

Label Feature 1

Offset

La
be

l

0 1 2 3 4 5

A

B

C

D

E

Q

Label Feature 2

Offset

La
be

l

0 1 2 3 4 5

A

B

C

D

E

Q

Label Feature 3

Offset

La
be

l

0 1 2 3 4 5

A
B
C
D
E
Q

Label Feature 4

Offset

La
be

l

0 1 2 3 4 5

A
B
C
D
E
Q

Label Feature 5

Offset

La
be

l

0 1 2 3 4 5

A
B
C
D
E
Q

Label Feature 6

Offset

La
be

l

(c) RBM(3)

Figure 6.3: Label feature weights learnt by the RBM-CRF models on data from Toy

Problem 1
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That is, more than one latent variable will contribute weight to a prediction. One of the

label features of RBM(2) learns has weights similar those of RBM(1)’s label feature; the

other matches both ABCD and BCE. RBM(3) learns several patterns including patterns

that capture both structures (label features one through three) and patterns that match

groups of Qs (label features five and six). It is hard to discern what label feature four

learns. RBM(3) has many more label features than necessary, and it appears that the

excess capacity is used to general structure. It is interesting to note that no label feature

in all of the RBM-CRF models matches just the BCE structure. The reason could be

that the observation-label mapping does a good job at classifying the E so there is no

need to model the BCE group exclusively.

0 5 10 15 20 25 30 35 40 45 50
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Q
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be

l

Time

Figure 6.4: Labels of the sequence used to illustrate Gibbs sampling in the RBM-CRF

models.

To illustrate how the RBM-CRF models work when presented with observations, we

show 150 samples generated by Gibbs sampling. The labels for the sequence that we

used are shown in Figure 6.4. The sequence consists of two groups of BCE (groups 1 and

2) followed by two groups of ABCD (groups 3 and 4). Samples for each label feature in

each RBM-CRF model are shown in Figure 6.5. The label feature in RBM(1) is active

only for groups 3 and 4, correcting the mistakes made by the logistic regression classifier.

The label feature is active at two replications indicating that the ABCD pattern that it

prefers it found at both offsets, each by a different instantiation of the label variable. The
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Figure 6.5: Label feature samples produced Gibbs sampling using observations from test

sequence 2 of Toy Problem 1. Within a plot, the vertical axis shows the replications of

the label feature for the sequence. A white entry indicate an on sample (1) and a black

entry indicates an off sample (0).
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first label feature of RBM(2) is also only active for groups 3 and 4, but the second label

feature is also active for the two BCE groups. The first four label features for RBM(3)

are active for all four groups. The last two label features are on for everything except the

structures. The samples from RBM(3) are much noisier than the samples from RBM(1)

and RBM(2) since the weights for the model are not as well defined as the weights of the

other two models.

6.2 Toy Problem 2: Larger Structures

To further investigate the capabilities of the RBM-CRF model, a second, more complex,

toy problem was created. The motivation for this problem are tasks in which instances

of a class appear in groups but where the observations for items inside the group are

ambiguous. In the Cora references problem (see Section 6.4), this sort of effect is seen

with some labels like Title and Book Title as well as Author, Editor, and Publisher.

The observations for these fields can be very similar, but if something is known about

the edges of the blocks and the structures, then the ambiguities in the middle can be

resolved.

There are three labels {A, B, O}. Label sequences were generated according to the

state machine shown in Figure 6.6. The a states generate A labels, the b states generate

B labels, and the o states generate O labels. The s states do not generate any labels

and exist only to keep the diagram clear. State s1 is the initial state and state s4 is the

terminating state. When generating a sequence, the sequence length was chosen from

a Poisson(30) distribution. If s4 was encountered before the length was reached, the

generation was halted. If, when the length was reached, the system was in one of the a

or b states, the length was extended and generation continued until the new length was

reached or s4 was encountered. The length of the sequences was limited to keep training

time reasonable since most of the inference algorithms take time polynomial in the length
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Figure 6.6: Finite state automata used to generate the data for Toy Problem 2.

of sequence.

The observations are vectors in x ∈ {0, 1}80. Let xd be the dth dimension of obser-

vation x. All states except the s states generate observations according to the following

generative model:

xd|α, p ∼ αaBernoulli(pa,d) + αbBernoulli(pb,d) + αcBernoulli(pc,d) + αoBernoulli(po,d)

pa,d ∼ Beta(sa,d, ta,d)

pb,d ∼ Beta(sb,d, tb,d)

pc,d ∼ Beta(sc,d, tc,d)

po,d ∼ Beta(so,d, to,d)

The si,j are integers chosen at random from the interval [1, 10], and the ti,j are integers

chosen at random from the interval [1, 100]. The mixing proportions α depend on the

state and are shown in Table 6.5.

The interior of the large blocks of a or b is meant to be fairly ambiguous, and the small

patterns should provide some conflicting information about how to label observations.

The observations for the o states are essentially unambiguous filler. We expect all models
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States αa αb αc αo

{a1, a6, a7, a8, a9} 1 0 0 0

{b1, b6, b7, b9, b10} 0 1 0 0

{o1, o2, o3, o4} 0 0 0 1

all others 1
3

1
3

1
3 0

Table 6.5: Mixing proportions used in the generative model for Toy Problem 2.

to do fairly well given that many observations will have an unambiguous labeling. We

hypothesize that the MEMM and the CRF should perform better than logistic regression

with respect to accuracy and whole instance accuracy since they can model interactions

between adjacent labels; they will not, however, be perfect since it should be difficult to

handle the ambiguity within the larger structures. We predict that RBM-CRF models

with experts that look at larger groups of label variables should be able to improve on

the performance of the other models by learning the larger structures.

6.2.1 Setup

1100 sequences were generated. The first 100 were used as the training set, and the

remaining 1000 were used as the test set. We trained all temporal models along with two

RBM-CRF models (Table 6.6). Because of the high dimensionality of the observations,

the L-BFGS optimizer was used to train all fully-observed models. It was also used in

the M step of EM for the IOHMM and the HRF. To speed up training of the CRF

and the ICRF, the weights of those models were initialized using the weights of the

trained MEMM and IMEMM, respectively. The parameters of all other models used

were initialized using values chosen at random from the interval [−1, 1]. For all models

except the two RBM-CRF models, training was stopped when the relative change in the

log likelihood was less that 1× 10−6. All training runs were restarted five times and the

best model with respect to the training data was chosen as the final model. All models

used a weight decay regularizer with σ = 10.

The number of states in the IOHMM was chosen from two to 13 using five-fold cross-
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Figure 6.7: Five-fold cross-validation results for the IOHMM model on Toy Problem 2.

Name Observation Model Label Features

RBM(1) LR (9, 0 : 1)

RBM(2) LR (9, 0 : 1), (3, 0 : 7)

Table 6.6: Details of the RBM-CRF models used with Toy Problem 2.

validation. The results from cross-validation are shown in Figure 6.7. Five restarts at

different initial parameter settings were done for each fold to help deal with local optima.

The number of states chosen for the final model was eight. The HRF also had eight

states. To keep the training time reasonable, the number of iterations of EM was limited

to 100 and the number of steps of optimization in the M step was limited to 100. Plots

of the log likelihood during typical runs of EM are shown for the IOHMM and the HRF

in Figure 6.8. The change in log likelihood on the first iteration is typically very large so

the initial log likelihood is not shown. EM for the IOHMM converges quite slowly, but

the HRF converges quite quickly, typically in 10 to 20 iterations.

RBM(1) had a logistic regression expert and one group of nine label features that

looked at adjacent label variables. RBM(2) was like RBM(1) but also included a group
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Figure 6.8: Typical log likelihood versus iteration of EM curves for the IOHMM and

HRF models.

of two label features that looked at eight label variables in a row. The learning rate was

0.1, the weight decay was 1
σ2 , and a momentum of 0.9 was incorporated after 25 iterations.

1000 iterations of CD were done. For the first 500 iterations, one reconstruction step was

used; after iteration 500, the number of reconstruction steps was increased to three. 150

iterations of Gibbs sampling were done to compute the approximate marginals for the

RBM-CRF models at test time; 50 of the samples were discarded as burn-in.

Method Mean Time (s) Standard Deviation

LR 1.6 × 102 4.0 × 101

MEMM 1.1 × 101 1.5 × 100

IMEMM 4.3 × 102 7.5 × 101

CRF 2.3 × 102 4.0 × 101

ICRF 3.9 × 102 5.8 × 10−1

IOHMM 7.3 × 103 9.4 × 102

HRF 5.8 × 103 1.5 × 103

RBM(1) 1.3 × 104 7.1 × 102

RBM(2) 2.0 × 104 3.7 × 103

Table 6.7: Training times of the models averaged over five runs.

The training times for each model are shown in Table 6.7. The time for the IOHMM

does not include the time taken to run cross-validation.
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LR MEMM IMEMM CRF ICRF IOHMM HRF RBM(1) RBM(2)

A 73.87 80.93 78.34 82.19 79.91 71.71 71.28 80.37 82.98

B 75.91 79.10 77.05 84.43 82.17 73.74 73.88 82.94 84.97

O 99.20 99.43 99.30 99.20 99.55 99.09 98.91 99.59 99.64

Average F1 Score 82.99 86.49 84.90 88.61 87.21 81.51 81.36 87.63 89.20

Average Accuracy 90.80 92.71 91.82 93.73 93.16 90.01 89.84 93.41 94.23

Instance Accuracy 21.20 37.40 31.30 52.30 45.70 17.90 18.40 52.70 63.90

Table 6.8: Per-label F1 scores and overall performance results for the different models

on test data for Toy Problem 2 All figures are in percent.

6.2.2 Results

The results of running the trained models on the test data are shown in Table 6.8. Lo-

gistic regression performed the most poorly with respect to all three overall performance

metrics. The F1 scores for labels A and B are low, but, because there is very little

ambiguity in the O observations, the F1 score for O is high

Adding links between adjacent label variables significantly improved both the F1

scores for the A and B labels as well as the overall performance. Using observation-

dependent transitions increased the whole instance accuracy by about 6 to 8% when

compared to using the separate factorization. The reason for the increase could be

because observations may provide useful information about good pair-wise labellings.

For example, the last item in the large blocks of A and B has a fairly unambiguous

observation which may be associated with having a previous label which is also be an A

or a B. The undirected models performed better than their directed version: the CRF

classified about 15% more sequences correctly than the MEMM while the ICRF classified

about 14% more sequences correctly than the IMEMM.

Although they performed about the same when compared to each other, the IOHMM

and the HRF did not perform as well as the fully observed chain structured models.

In fact, their instance accuracies were slightly lower than logistic regression. It could

be that the models severely overfit the training data and were thus quite brittle. Both

the IOHMM and the HRF were able to model the training data almost perfectly. This
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Figure 6.9: Comparison of IOHMM and HRF models with varying numbers of hidden

states and settings of σ on training data and test data.

indicates that choosing the number of latent states for the latent state models can be

difficult. It is usually possible to reduce overfitting by reducing the model complexity

so to investigate this, we trained five IOHMM and HRF models for various numbers of

latent states and two settings of σ. The results on running the trained models on the

training data and on the test data are shown in Figure 6.9. The error metric is the

average proportion of items misclassified. Even with a small setting of σ, all models are

able to fit the training data quite well. However, they generally do quite poorly on the

test data. Given enough latent states, it is likely that all models should be able to fit the

test data well. A lower setting of σ, corresponding to a higher penalty for large weights

also helps reduce overfitting.

Neither of the RBM-CRF models appeared to overfit the training data and both

performed well on the test data. The F1 scores of RBM(1) were close of those of the CRF,

and the average accuracy was comparable. It is interesting to note that RBM(1) mimics

the structure of the ICRF but performs at about the level of the CRF. RBM(2) did even

better than RBM(1), classifying 64% of the sequences correctly, an increase of about 12%
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Figure 6.10: Label feature weights learnt by the RBM-CRF models on data from Toy

Problem 2

over both the CRF and RBM(1). The addition of the large label features significantly

improved performance by providing the capacity to model the large structures.

Hinton diagrams of the weights learnt by the two RBM-CRF models are shown in

Figure 6.10. RBM(1) learns several different kinds of label features. Most look for co-

occurrences of the same label while some, like the fourth label feature, seem to specify

both a co-occurrence and a transition. Several patterns are learnt by multiple label

features, indicating that the set is over-complete.

The small label features of RBM(2) focus more on transitions although there are a

couple (feature four and feature five) that still look for co-occurrences of the same label.
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LR CRF IOHMM RBM(2)

A 77.91 96.63 91.96 82.10

B 79.95 96.87 92.43 83.49

O 99.60 99.76 99.94 99.63

Average F1 Score 85.82 97.75 94.78 88.41

Average Accuracy 92.46 98.76 97.25 93.80

Instance Accuracy 28.10 89.00 72.80 62.60

Table 6.9: Per-label F1 scores and overall performance results for the different models

on training data for Toy Problem 2. All figures are in percent.

LR CRF IOHMM RBM(2)

A 42.31 25.38 37.09 38.96

B 24.48 30.19 16.73 21.43

O 48.80 8.22 50.76 45.28

Average F1 Score 38.53 21.26 34.86 35.22

Average Accuracy 42.12 22.01 40.78 38.05

Instance Accuracy 1.20 1.80 1.00 2.00

Table 6.10: Per-label F1 scores and overall performance results for the different models

on test data for Toy Problem 2 All figures are in percent.

The larger label features look for larger groups of mostly contiguous labels. The first

label feature matches the large group of As while the third matches the large group of

Bs. Both features also match some of the Os that can occur either at the beginning or

the end of the groups and appear to be matching the groups at different offsets given the

longer-than-normal size of the groups and the multiple positive weights for start/end Os.

The second label feature appears to match longer groups of Os but also seems to capture

the edges of some A/B structural patterns.

To further investigate the issue of overfitting, we trained a logistic regression model,

a CRF, an IOHMM with eight latent states, and the RBM(2) model on the test data

and generated a new set of 1000 sequences to use for testing. The IOHMM model used

a weight decay regularizer with σ = 2 while the other models used a weight decay

regularizer with σ = 10. No random restarts were done. RBM(2) was trained for 200

iterations.

The results of running the models on the new training and testing data are shown in
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Tables 6.9 and 6.10 respectively. All models appear to overfit the data as the values of

all performance metrics dropped considerably on the test data. Even though the CRF

was the best model with respect to the training data, it performs the worst on the test

data. The IOHMM and RBM(2) were more robust than the CRF but still performed

slightly worse than logistic regression. This indicates that perhaps the selection of both

the model and the parameters to control the capacity of the model needs to be done very

carefully.

6.3 Toy Problem 3: Memory

One of the differences between the RBM-CRF and the templates models is that there

are no direct connections between the label variables or between the latent variables.

Although this implies that there is no notion of state in an RBM-CRF model like there

is in a MEMM/CRF or IOHMM/HRF, the RBM-CRF may still be able to use its latent

variables together to model state.

We use the synthetic A/B/R/I problem proposed by Kakade, Teh and Roweis [14]

to illustrate how the different models perform when state is required. There are four

observations {A, B, R, I} and two labels {0, 1}. A always maps to 0 and B always maps

to 1. The observation R (resume) causes the last A or B label to be repeated. When the

observation is I (interrupt), the label is the opposite of the label of the last I observation.

We consider a data model in which the initial I observation always has label 0.

A standard CRF can model the Rs correctly since only one bit of information is re-

quired and there are two labels corresponding to those states. An interrupt observation

does not cause any change in state. To model both the R and I observations, two bits of

memory are required so a CRF cannot model the data correctly, but latent state models

such as the IOHMM and the HRF can. RBM-CRF models should not be able to com-

pletely model the I observations. It may be possible for them to learn how I observations
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work when restrictions are made on the maximum distance between I observations. How-

ever, it is clearly impossible for them to model I when there are no restrictions because

an infinite number of label features would be required. In addition, there is no way for

the RBM-CRF models to remember that the label for the first I observation in 1 because

no state is maintained.

6.3.1 Setup

We generated 100 sequences of length 50 for the training set and 100 sequences, also of

length 50, for the test set. About 25% of the observations were A, 25% were B, 40%

were R, and 10% were I. As in Toy Problem 1, the observations are represented with a

one-hot encoding.

We trained a logistic regression model, a CRF, an IOHMM, an HRF, and two RBM-

CRF models. With respect to the IOHMM and the HRF, had 4 latent states, the number

of optimizations in the M step was limited to 100, and the total total number of iterations

of EM limited to 100. All models used a weight decay regularizer with σ = 10. Training

was halted when the relative change in the log likelihood was less than 1× 10−6.

The architectures of the two RBM-CRF models that we trained were slightly different

from those considered with the previous two problems as the label features were condi-

tioned on the observations and did not always look at adjacent label variables. RBM(1)

had a logistic regression expert and two label features that were conditional on the input

(Figure 6.11). RBM(2), illustrated in Figure 6.12 was like RBM(1) but also had nine
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groups of two label features which, together, approximated variable length memory by

looking at pairs of labels separated by varying distances. The separations ranged from

zero (adjacent) to eight. The learning rate was 0.01, the weight decay was 1
σ2 , and a

momentum of 0.9 was incorporated after 25 iterations. 1000 iterations of CD were done.

For the first 500 iterations, one reconstruction step was used; after iteration 500, the

number of reconstruction steps was increased to three. 150 iterations of Gibbs sampling

were done to compute the approximate marginals for the RBM-CRF models at test time;

50 of the samples were discarded as burn-in.

Method Mean Time (s) Standard Deviation

LR 2.2 × 101 7.2 × 100

CRF 2.5 × 102 6.6 × 101

IOHMM 3.3 × 103 4.5 × 102

HRF 8.8 × 103 4.3 × 103

RBM(1) 1.4 × 104 1.2 × 103

RBM(2) 3.9 × 104 5.4 × 104

Table 6.11: Training times of the models averaged over five runs.

The average training times for the various models are shown in Figure 6.11. All

models except for RBM(2) were trained five times, each time starting with a different

set of initial parameters. Due to issues with server availability, only two runs of training

were done for RBM(2), explaining its high variance.

6.3.2 Results

The results of running the trained models on the test data are shown in Table 6.12. The

number of mistakes made when the observation was either an R or an I is shown in

Figure 6.13.

Logistic regression achieved an average accuracy of 76%. It is unable to model both

the R and I observations. A detailed look at the errors showed that all R observations

were classified as 1 and all I observations were classified as 0. Adding links between

adjacent label variables to create a state machine improves both the F1 scores and the
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LR CRF IOHMM HRF RBM(1) RBM(2)

0 71.67 91.33 94.73 95.99 90.20 93.65

1 79.75 91.23 94.83 95.85 90.55 93.79

Average F1 Score 75.71 91.28 94.78 95.92 90.38 93.72

Average Accuracy 76.38 91.28 94.78 95.92 90.38 93.72

Instance Accuracy 0.00 1.00 5.00 7.00 1.00 4.00

Table 6.12: Per-label F1 scores and overall performance results for the different models

on test data for Toy Problem 3. All figures are in percent.

LR CRF IOHMM HRF RBM(1) RBM(2)

R 48.22 11.41 1.75 0.10 12.46 4.80

I 44.38 42.54 46.22 41.31 47.24 44.99

Table 6.13: Per-observation error rates (in percent) for observations R and I on Toy

Problem 3 test data.

average accuracy, although the whole instance accuracy is still very low. The error

rate of the CRF is not zero because the CRF appears to be trying to model both the R

observations and the I observations. A CRF with hand-picked parameters can achieve the

optimal instance accuracy of 95%. Kakade, Teh and Roweis [14] observed that changing

the objective function to maximize the marginal probabilities of the sequence elements

rather than the joint probability of the sequence can improve model performance so

changing the objective function may help the performance of the CRF on this task.

The IOHMM and the HRF performed much better than the CRF. The error rate

on the R observations dropped to under 2% for the IOHMM and was almost zero for

the HRF. However, both did not model the joint distribution correctly even though they

should be able to (hand-tuned models achieve an instance accuracy of 98.8%). There

are two likely explanations. First, the models may not have been trained long enough or

may not have had enough random restarts to escape local optima. Second, like with the

CRF, the objective function may need to be changed.

The performance of the two RBM-CRF models is interesting. RBM(1) performed

just about as well as the CRF with respect to average F1 score, average accuracy and

whole instance accuracy. Hinton diagrams of the weights learnt by the model are shown
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in Figure 6.13. The second label feature looks reasonable: its weights indicates that

it prefers the observation R and two adjacent 0 labels. To completely model the R

observations, the first label feature should prefer the observation R and two adjacent

1 labels. However, the first label feature does not do this; in fact, it’s not clear what

it’s is modeling. Given that the logistic regression model maps R to 1 and I to 0, the

label feature could be working with the logistic regression model to capture some of the

dynamics of the I observations and the R observation as the observation weights bias the

label feature towards being active for I and the label weights prefer the pattern 1-0.

RBM(2) performed better than RBM(1): the error rate with respect to observation

R dropped significantly, indicating that additional label features were used primarily to

model the effects of the R observations.

6.4 Cora: Reference Paper Citations

The Cora citations dataset1 was developed by the Cora project [20] and used by Peng and

McCallum (PM) in a recent study of CRFs [24]. It consists of 500 bibliography entries

from academic papers. There are 13 possible labels for each token in each entry: author,

book title, date, editor, institution, journal, location, note, pages, publisher, tech, title,

and volume.

6.4.1 Setup

Following the work of PM, we divided the data set into a training set of 350 citations

(chosen at random) and a test set containing the remainder. Each entry was split into

tokens based on whitespace. The observation features that we used are modeled after

those used by PM and are described in Table 6.14. All features are binary, and, except for

the “EndsIn” features, ignore trailing commas, periods, colons, and semi-colons. None

1Available from http://www.cs.umass.edu/∼mccallum.

http://www.cs.umass.edu/~mccallum
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Name Description

InitCap Starts with a capitalized letter.

AllCaps All characters are capitalized.

AllDigits All characters are digits.

ContainsDigits Contains at least one digit.

ContainsDots Contains at least one period.

ContainsDash Contains at least one dash.

LonelyInitial A single letter followed by a period.

SingleChar One character only.

CapLetter One capitalized character only.

URL Regular expression for a URL

InParen In parentheses.

Year Regular expression for a year.

Punc Only punctuation (period, comma, colon, semi-colon).

EndsInComma Ends in a comma.

EndsInDot Ends in a period.

EndsInColon Ends in a colon.

EndsInSemiColon Ends in a semi-colon.

EndsInQuote Ends in a quotation mark.

StartsWithQuote Starts with a quotation mark.

Name Appears in a list of names.

Place Appears in a list of places.

Acronyms Appears in a list of acronyms.

Months Appears in a list of month and day names.

Word Matches the word.

Table 6.14: Input features used with the Cora-Refs data

of the list-based features are complete: there are words in both the training data and

the test data that belong in a category but do not have an entry. 1374 vocabulary

features (“Word”) were created by extracting whole words from the training data. The

words were converted to lowercase and then stemmed. The observations vectors were

augmented to include the observations for the previous token and the next token. That

is, x′t = [xt−1;xt;xt+1]. The dimensionality of the augmented observation vectors was

4191.

We trained all fully observed temporal models and seven different RBM-CRF mod-

els. We did trained one IOHMM with six latent states but no HRF because of time

constraints. The number of iterations of EM was limited to 100 and the number of iter-

ations of optimization in the M step was limited to 100. We did start cross-validation to

choose the number of latent states for the IOHMM model, but it was stopped as it would

have taken over three weeks to complete, even with no random restarts and with running
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the cross-validation procedure for each state on a separate CPU. In general, all models

took a while to train. No random restarts were done in order to keep the overall training

time down. We report the time taken to train several of the models in Table 6.15. The

times listed for the four RBM-CRF models that use a pre-trained classifier (RBM-LR(1),

RBM-LR(2), RBM-CRF(1), and RBM-CRF(2)) do not include the time needed to train

the classifier.

Method Time (s)

LR 8.4 × 104

MEMM 1.2 × 104

IMEMM 3.6 × 104

CRF 3.6 × 105

ICRF 4.0 × 104

IOHMM 8.1 × 105

RBM(1) 1.6 × 105

RBM(2) 2.5 × 105

RBM(3) 2.9 × 105

RBM-LR(1) 1.8 × 104

RBM-LR(2) 4.2 × 104

RBM-CRF(1) 1.5 × 104

RBM-CRF(2) 4.4 × 104

Table 6.15: Training times of selected models.

All temporal models used a weight decay regularizer with σ = 10. To reduce the time

taken to train the undirected models, the weights of the CRF were initialized with those

from the trained MEMM and the weights of the ICRF were initialized with those from

the trained IMEMM.

The details of the different RBM-CRF models are shown in Table 6.16. RBM(1),

RBM(2), and RBM(3) were trained for 1000 iterations. The first 500 iterations used

one-step reconstructions while the last 500 used three-step reconstructions. The other

four models were trained for 500 iterations and used one-step reconstructions. With

respect to the integration of the pre-trained classifiers, we used γ = 0.75 for RBM-LR(1)

and RBM-LR(2) and γ = 0.6 for RBM-CRF(1) and RBM-CRF(2). These values were

chosen by hand based on examinations of the entropy of the prediction distributions

produced by the LR and CRF models. The low value of γ for RBM-CRF(1) and RBM-



Chapter 6. Experimental Results 74

Name Observation Model Label Features

RBM(1) LR (15, 0 : 1)

RBM(2) LR (15, 0 : 1), (20, 0 : 2)

RBM(3) LR (15, 0 : 1), (20, 0 : 2), (5, 0 : 9), (5, 0 : 19)

RBM-LR(1) Pre-trained LR (10, 0 : 9)

RBM-LR(2) Pre-trained LR (10, 0 : 4), (10, 0 : 9), (10, 0 : 19)

RBM-CRF(1) Pre-trained CRF (10, 0 : 9)

RBM-CRF(2) Pre-trained CRF (10, 0 : 4), (10, 0 : 9), (10, 0 : 19)

Table 6.16: Details of the RBM-CRF models used with the Cora references data set.

CRF(2) is because the prediction probabilities produced by the CRF had almost no

entropy. All models used a learning rate of 0.1 and a weight decay of 1
σ2 . A momentum

term that added 0.9 of the previous update was added after 25 iterations. At test time,

400 iterations of Gibbs sampling were done; the first 200 iterations were discarded as

burn-in.

6.4.2 Results

The per-label F1 scores and overall performance results for selected models are shown in

Table 6.17. In particular, we show results for logistic regression, RBM-LR(2), our CRF,

RBM-CRF(2), IOHMM, and RBM(3) as well as the results reported by PM (CRF*).

Bar graphs of − log(1 − F1) for these models are shown in Figure A.1. This measure

highlights the differences in the scores between the models and is useful because the F1

scores of several models on some labels are quite similar. The results for all models

are given in Appendix A along with confusion matrices for LR, RBM-LR(2), CRF, and

RBM-CRF(2).

In general, the models that are capable of representing label structures performed

better than logistic regression. The RBM-CRF models with the integrated logistic re-

gression expert were the exception. Even though their instance accuracies were slighly

higher than the instance accuracy of logistic regression, their average F1 scores and ac-

curacies were 10 to 15% lower. There are several possible explanations. First, RBM(1)

through RBM(3) only had 15 pairwise label features which may not be enough to model
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LR RBM-LR(2) CRF* CRF RBM-CRF(2) IOHMM RBM(3)

Author 92.06 95.01 99.4 99.29 99.29 92.14 95.07

Book Title 78.86 88.47 93.7 91.86 91.88 83.70 42.91

Date 98.50 98.50 98.9 98.25 98.01 97.77 96.50

Editor 53.97 55.56 87.7 90.91 90.91 32.94 52.63

Institution 71.72 81.16 94.0 86.15 86.15 73.53 61.40

Journal 61.40 80.12 91.3 90.29 89.97 70.00 62.05

Location 80.85 82.54 87.2 83.98 82.87 80.90 74.39

Note 47.76 55.38 80.8 56.00 77.78 19.61 28.57

Pages 95.02 94.66 98.6 97.28 97.66 96.53 88.51

Publisher 72.58 76.56 76.1 85.04 85.71 66.67 67.92

Tech 64.10 63.29 86.7 68.42 68.42 66.67 50.00

Title 89.01 93.15 98.3 96.45 97.79 90.33 81.17

Volume 93.67 93.17 97.8 95.60 95.60 90.80 89.44

Average F1 Score 76.89 81.35 91.50 87.66 89.39 73.97 68.51

Average Accuracy 85.08 90.11 95.37 94.49 95.05 86.25 76.77

Instance Accuracy 16.00 42.00 77.33 66.00 65.33 24.67 29.33

Table 6.17: Per-label F1 scores and overall performance results for selected models on

the Cora test data. All figures are in percent.

the important interactions present in the data. The addition in RBM(2) of 20 features

that looked at groups of three labels did not increase overall performance that much, al-

though the F1 score of certain labels did increase, indicating that even more small scale

label features may be required. Second, the logistic regression classifier is very complex

(it has on the order of 50,000 parameters). The RBM part of the models has many fewer

parameters (RBM(3) has roughly 3000). It may be difficult for the training procedure

to effectively deal with the difference in complexity. Third, there may be problems with

local optima since the models were only trained once, although this might not be a large

factor as all three models performed quite poorly.

The CRF and ICRF models outperformed their directed counterparts once again. The

CRF performs slightly better than the ICRF; however, the MEMM does not perform as

well as the IMEMM with respect to average F1 score and accuracy. It does, however,

classify more sequences entirely correctly than the IMEMM.

PM used a feature induction scheme to learn which observation features and combi-

nations thereof are useful for modeling the data. Feature induction is useful because it

can build features that look for particular structures in the observations that are good
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for classifying observations and may help to explain the high instance accuracy that their

model achieved when compared to the instance accuracy of the CRF model. In general,

the CRF achieved F1 scores close to what PM reported with the exception of the scores

for the Institution, Note, and Tech labels. While the addition of larger scale structures

with the RBM-CRF(1) and RBM-CRF(2) models did not significantly affected most of

the scores, the score for Note did increase significantly.

The results of the IOHMM were disappointing, although not unexpected given our

experience with the IOHMM on the synthetic problems. The average F1 score was lower

the the average F1 score of logistic regression though it did manage to classify almost

twice the number of test sequences entirely correctly. Like with Toy Problem 2, the

IOHMM seems to be severely overfitting the data as it almost perfectly fits the training

data. Regularizing the model more with a stricter weight decay parameter and choosing

the number of states using cross-validation should help improve performance. However,

it is not clear if the extra time required to find good settings of these parameters is worth

it as the IOHMM took nine days to train, over six times longer than the combined time

to train the LR and RBM-LR(2) models.

Adding the ability to learn large scale structures using an RBM-CRF can improve

performance. Building a structural model on top of logistic regression improved the

average F1 score, the average accuracy, and the instance accuracy when compared to

plain logistic regression. In fact, RBM-LR(2) classified 163% more sequences correctly. A

look at the confusion matrices (Tables A.3 and A.4) indicates that RBM-LR(2) correctly

labels more tokens that belong groups whose tokens can be confused (such as Title, Book

Title, and Journal).

Adding an RBM-CRF on top of the CRF model does not help as much as adding

one on top of logistic regression. The reason might be that the CRF produces very low

entropy predictions so even with the low value of γ the RBM-CRF may not be able to

affect Gibbs sampling too much. It would be worthwhile varying γ to see if better results
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can be obtained.

In Figures A.2, A.3, and A.4 we show Hinton diagrams of the weights learnt by

selected label features of the RBM-LR(2) model. We observed that many of the label

features in RBM-LR(2) were very similar to label features in RBM-CRF(2) indicating

that the models were pulling out the common structures.

The short label features of length five tend to focus on modeling contiguous groups of

labels. They often have large positive weights for several types of labels and very negative

weights for others. This indicates that they might be modeling what they expect not to

see as well as what they expect to see. The short label features, to a lesser extent, also

model relationships between labels. For example, label feature four seems to represent

the relationship “Author, Book Title” although it has some other features mixed in too.

Whereas the small label features looked mostly at groups of contiguous nodes, the la-

bel features that looked at groups of 10 labels tend to focus more on relationships between

labels. For example, label feature six focuses on the relationship “Editor, (Journal,Book

Title)” and label feature ten predominantly models “Author, Title”. Most label features

tend to look for multiple patterns. Label feature nine recognizes “Title, Journal” in

addition to “Editor, Volume” and “Author, Institution”. The largest label features that

look at groups of twenty labels tend to model global structure, but don’t seem to be as

well-defined as the smaller models. They focus on structures like “Title, Book Title” as

well as labels that appear near the end of an entry such Publisher, Location, Date, and

Page.
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Conclusions

Standard models for sequence labeling have difficulty capturing large scale structures

as they are completely parameterized with respect to the structures that they look for.

Any attempt to incorporate large scale structure directly by expanding the set of known

configurations results in an unpalatable exponential increase in model complexity.

We have discussed some common models and have described two families of models

that have not been extensively studied in the context of sequence labeling: chain struc-

tured latent state models and parameterized template models. Chain structured latent

state models posit the existence of a latent finite state machine whose state transition

probabilities are conditioned on observations. They are more expressive than fully ob-

served models because the states of the machine have been decoupled from the labels.

We presented two specific models: the IOHMM and the HRF.

Template models define a collection of parameterized label features that look at sub-

sets of label variables. The RBM-CRF model presented provides an elegant way of spec-

ifying problem-specific architectures that can efficiently learn label structures present in

the data.

We have observed that both types of models can outperform standard techniques on

data that exhibit characteristics including long term dependencies, large scale structures,

78
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and variable term memory. However, both types of models have drawbacks. With respect

to the the IOHMM and the HRF, it may hard to pick the number of latent states. The

models can take a long time to train, but the gain in performance over standard methods

may not be worth it. Both models are subject to local optima, but the HRF seems to be

more susceptible than the IOHMM. They are also prone to overfitting, although a good

regularizer and an appropriate number of latent states can result in better performance.

Better initialization strategies might also make a difference and should be investigated

further.

While the deciding on architectures for RBM-CRF models is generally more straight-

forward than choosing the number of latent states for an IOHMM or an HRF, it is easy

to pick a sub-optimal architecture and may be difficult to pick a good minimal one. Cer-

tain aspects of training rely on hand picked parameters and may require some trial and

error to set properly. For complex problems, directly integrating a model like logistic

regression may result in poor performance, and experimentation may be necessary to

determine what is most effective. Finally, the RBM-CRF is translation invariant and

maintains no state so it is not well suited to tasks that require variable length memory.

In general, the choice of model for a particular problem is highly dependent on the

properties of the problem. While a certain amount of power comes from being able to

incorporate arbitrary observation features, problem-specific architectures may provide a

significant increase in performance when compared to off-the-shelf methods.

7.1 Future Directions

Our research has opened up a large number of possible directions for future research.

In the short-term, more experiments on real data need be be performed. It would be

interesting to explore these models in areas such as speech recognition, specifically, in

phoneme recognition, where the ability to recognize patterns of phonemes and phenomena
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such as co-occurrences may be very useful. Another possible area of interest would be

part-of-speech tagging. Here, it is common to see certain patterns in the parts-of-speech

which may be lost with models like the CRF. Finally, it might be fruitful to apply RBM-

CRF models to other tasks where CRFs have been applied successfully such as parsing

[28] and coreference resolution [21].

While the task of picking the size and kind of templates is, in general, easier than

picking the number of latent states in an IOHMM or an HRF, it still may be quite

difficult. It would be beneficial to explore methods for automating the label feature

selection process. In particular, Lafferty et al. [15] and McCallum [18] have developed

methods for efficiently inducing observation features in CRFs. It may be possible to

apply their methods, or variations on them, to label feature induction. Given the success

of observation feature induction, label feature induction coupled with observation feature

induction may be quite successful.

One issue with the RBM-CRF model is that it is flat: there is only one level of

information regarding the labels. It may be desirable to have the label features interact

in some way or to incorporate regional or global context. One way to address these issues

is to develop hierarchical RBM-CRF models in which label features interact through

meta label features, which themselves interact through meta meta label features, and

so on. This might be especially useful in unsupervised settings in which the labeling

of the data is not known and the goal of learning is to discover a labeling that makes

sense. Specific applications of this may include DNA motif detection and music structure

analysis. Another way to approach this is to use multi-scale RBM-CRF models [9] in

which one gets varying levels of resolution in terms of label specificity.

Finally, template models do not maintain state like chain structured models so it can

be difficult for them model data that exhibits properties that would be easy to model

using state. Hierarchical models may be one way of dealing with such data. Another

way would be to use product models that combine one or more latent state models like
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the IOHMM or HRF with an RBM-CRF model.



Appendix A

Experimental Results

A.1 Cora: Reference Paper Citations

This appendix contains complete results on the Cora data set (Table A.2) as well as

figures and tables referenced in Chapter 6. The abbreviations used in the confusion

matrices (Tables A.3 to A.6) are given in Table A.1.

Label Abbreviation

Author au

Book Title bo

Date da

Editor ed

Institution in

Journal jo

Location lo

Note no

Pages pg

Publisher pu

Tech te

Title ti

Volume vo

Table A.1: Label Abbreviations

82
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Figure A.1: Comparison of F1 scores of several models on Cora references test data.
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Figure A.1: Comparison of F1 scores of several models on Cora references test data.
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Figure A.2: Hinton diagrams of the weights learnt by selected label features of length

five in RBM-LR(2).
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Figure A.3: Hinton diagrams of the weights learnt by selected label features of length 10

in RBM-LR(2).
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Figure A.4: Hinton diagrams of the weights learnt by selected label features of length 20

in RBM-LR(2).
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pu no ti jo bo au in vo te lo da pg ed

pu 45 0 2 2 3 9 1 0 0 3 0 0 0

no 0 16 11 5 6 1 0 0 5 1 0 0 0

ti 2 1 960 14 63 25 7 0 2 1 1 1 1

jo 4 1 8 101 48 3 4 1 1 0 0 0 0

bo 5 2 73 26 511 5 5 3 3 3 2 0 4

au 1 0 14 2 0 812 0 0 0 3 0 0 6

in 1 0 0 2 6 3 52 0 0 6 0 0 0

vo 0 0 0 0 1 0 0 74 1 0 0 3 0

te 0 1 5 1 2 3 1 0 25 0 0 2 1

lo 1 1 4 0 3 4 5 0 0 76 0 0 0

da 0 0 0 1 0 0 0 0 0 0 197 2 0

pg 0 0 0 1 3 0 0 1 0 0 0 124 0

ed 0 0 2 3 8 61 0 0 0 1 0 0 51

Table A.3: Confusion matrix for logistic regression on Cora references test data.

pu no ti jo bo au in vo te lo da pg ed

pu 49 0 5 0 3 3 1 0 0 3 0 1 0

no 0 18 10 5 5 0 0 0 6 1 0 0 0

ti 1 0 1026 4 28 14 2 1 2 0 0 0 0

jo 2 0 10 129 25 0 3 1 1 0 0 0 0

bo 6 0 48 5 568 1 0 3 4 3 1 1 2

au 0 1 6 0 0 829 0 0 0 1 0 0 1

in 1 0 0 0 5 2 56 0 0 6 0 0 0

vo 0 0 0 1 0 0 0 75 0 0 0 3 0

te 0 0 9 1 0 1 1 0 25 0 1 2 1

lo 4 1 3 0 2 1 5 0 0 78 0 0 0

da 0 0 0 1 0 0 0 0 0 0 197 2 0

pg 0 0 1 1 1 0 0 1 0 0 1 124 0

ed 0 0 7 4 5 56 0 1 0 3 0 0 50

Table A.4: Confusion matrix for RBM-LR(2) on Cora references test data.
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pu no ti jo bo au in vo te lo da pg ed

pu 54 0 1 3 2 0 0 1 0 3 0 1 0

no 0 21 15 0 0 0 0 0 7 0 0 0 2

ti 0 4 1061 0 12 1 0 0 0 0 0 0 0

jo 0 0 0 158 11 0 0 2 0 0 0 0 0

bo 3 0 29 14 587 0 0 0 0 5 0 0 4

au 0 3 1 0 0 834 0 0 0 0 0 0 0

in 0 0 9 0 0 2 56 0 0 2 1 0 0

vo 0 0 0 1 1 0 0 76 0 0 1 0 0

te 0 0 0 2 10 0 0 1 26 0 1 1 0

lo 5 0 4 1 4 0 4 0 0 76 0 0 0

da 0 0 0 0 0 0 0 0 2 1 197 0 0

pg 0 2 2 0 0 0 0 0 0 0 0 125 0

ed 0 0 0 0 9 5 0 0 0 0 1 1 110

Table A.5: Confusion matrix for CRF on Cora references test data.

pu no ti jo bo au in vo te lo da pg ed

pu 54 0 2 3 1 0 0 1 0 3 0 1 0

no 0 35 1 0 0 0 0 0 7 0 0 0 2

ti 0 4 1061 0 12 1 0 0 0 0 0 0 0

jo 0 0 0 157 12 0 0 2 0 0 0 0 0

bo 2 1 21 14 594 0 0 0 0 5 1 0 4

au 0 3 0 0 0 835 0 0 0 0 0 0 0

in 0 0 0 0 8 2 56 0 0 3 1 0 0

vo 0 0 0 1 1 0 0 76 0 0 1 0 0

te 0 0 1 2 9 0 0 1 26 0 1 1 0

lo 4 0 4 1 5 0 4 0 0 75 1 0 0

da 0 0 0 0 0 0 0 0 2 1 197 0 0

pg 0 2 2 0 0 0 0 0 0 0 0 125 0

ed 1 0 0 0 9 6 0 0 0 0 0 0 110

Table A.6: Confusion matrix for RBM-CRF(2) on Cora references test data.
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tional Random Fields for Image Labeling. In Computer Vision and Pattern Recog-

nition (CVPR), 2004.

[10] Geoffrey E. Hinton. Products of experts. In Proceedings of the Ninth International

Conference on Artificial Neural Networks (ICANN 99), volume 1, pages 1–6, 1999.

[11] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Diver-

gence. Technical Report GCNU TR 2000-004, Gatsby Computational Neuroscience

Unit, University College London, 2000.

[12] Michael I. Jordan. An introduction to probabilistic graphical models. In preparation.

[13] Michael I. Jordan and Robert A. Jacobs. Hierarchical Mixtures of Experts and the

EM Algorithm. Technical Report AIM-1440, 1993.

[14] Sham Kakade, Yee Whye Teh, and Sam Roweis. An Alternate Objective Function

for Markovian Fields. In International Conference on Machine Learning 19 (ICML

02), pages 275–282, 2002.

[15] John Lafferty, Stephen Della Pietra, and Vincent Della Pietra. Inducing features of

random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(4):380–393, 1997.



Bibliography 93

[16] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Pro-

ceedings of the Eighteenth International Conference on Machine Learning. Morgan

Kaufmann, 2001.

[17] Robert Malouf. A comparison of algorithms for maximum entropy parameter es-

timation. In Proceedings of the Sixth Conference on Natural Language Learning

(CoNLL-2002), pages 49–55, 2002.

[18] Andrew McCallum. Efficiently Inducing Features of Conditional Random Fields. In

Conference on Uncertainty in Artificial Intelligence (UAI), 2003.

[19] Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy

markov models for information extraction and segmentation. In International Con-

ference on Machine Learning 18 (ICML 00), 2000.

[20] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating

the Construction of Internet Portals with Machine Learning. Information Retrieval

Journal, 3:127–163, 2000.

[21] Andrew McCallum and Ben Wellner. Conditional models of identity uncertainty

with application to noun coreference. In Lawrence K. Saul, Yair Weiss, and Léon
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