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Introduction 
 
 The importance of decision making as a driving force behind socio-economic 
mechanics makes it the focus of many disciplines (e.g. Public Choice theory, Decision theory, 
Game theory, etc.). In a social environment, the importance of decision making is all the more 
visible; and implementing a fair way of catering to everyone’s preferences can be nontrivial in 
situations with intelligent individuals who have the capacity to strategize. 
 
 We will start by covering historical results in the domains of Social Choice theory and 
Voting theory, providing a motivational background for the field of Algorithmic Mechanism 
Design. Links with related domains such as Game Theory and Mechanism Design will be 
exposed, and explored concepts will eventually build up to the current research in 
Algorithmic Mechanism Design. 

We then shift our perspective to a more specific approach undertaken recently, which 
is the design of percentile mechanism for facility location problems. At this point, Computer 
Science considerations and methodologies are introduced to complement an explanation of 
the algorithms used to optimize these mechanisms. These are then tested on various samples 
of artificially produced data. 

Finally, the focus is relayed to applying these mechanisms to real world data. Several 
approximation methods and heuristics are presented, in order to be used and combined to 
form algorithms to process the actual data. These are then tested on Irish election data. 

We conclude on the practical significance of this research, emphasizing the gap 
between other more abstract approaches that end up lacking in realistic pertinence. 
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1 Overview of Social Choice theory 
 
 
 Social choice theory is the field of study* concerned with aggregating individual 
preferences to form a collective decision. It stems from Kenneth Arrow's Social Choice and 
Individual Values (1951) in which he laid the ground for the field by defining some of its core 
concepts such as the general impossibility theorem. 
 
 
1.1 Arrow's Impossibility theorem 
 
 
 Looking for a 'fair' and wholesome voting system lead Arrow to prove that such a 
result was impossible. His axiomatic approach to voting theory defines a 'fair' voting system 
to be one where the following rules hold: 
 
non-dictatorship all individual preferences are assessed the same way, no emphasis 

is given to an individual over another 
universality the system should provide a unique result for any combination of 

preferences in a deterministic manner 
I.I.A.** when two alternatives are ranked the same way by two voters, the 

resulting preference should be consistent with that ordering; in 
other words, the way the other alternatives are ranked by the two 
voters should not affect the resulting relative positions of these two 
alternatives 

unanimity if an outcome is preferred by all participants over another, the 
resulting ranking should maintain that order 

 
 The theorem states that there is no voting system that can satisfy those conditions 
when the number of alternatives presented to the participants exceeds two. It is interesting to 
see that the implications of this founding result are representative of the field; i.e. in a lot of 
problems addressed by social choice theorists, there is no 'perfect' system, thus the focus is 
delegated to finding a 'good' system. 
 
 
 
 
 
 
 
*Amartya Sen exposes the fact that social choice theory can be viewed as both a field of study 
as well as “a particular approach or a collection of approaches typically used in that field of study”, 
qualifying the latter definition as narrower [1] 
 
**Independence of Irrelevant Alternatives 
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1.2 Problems in Social Choice 
 
 
 Arrow's axiomatic method has since been the de facto approach in Social Choice. In 
Moulin's Axioms of Cooperative Decision Making (1988), the author relies on the systematic 
approach to reduce the set of solutions to several problems in social choice: 
 
 “Of course, each microeconomic problem that we will examine has more than one plausible 
solution: There are many 'good' voting rules, several plausible 'values' for cooperative games [...] and 
so on. Ideally, the axiomatic method can help our choice by, first, reducing the number of plausible 
solutions as much as possible” [2] 
 
 The spectrum of problems addressed in Social Choice is pretty broad (elections, 
auctions, etc.). A common problem, and the focus of this paper, is facility location. 
 In its most general form, a facility location problem has the following characteristics: 
 
setting a set of individuals with preferences regarding the position of facilities, a set of 

facilities, and miscellaneous constraints on the space on which facilities have to 
be placed 

outcome the location of the facility(ies) 
 
 However, in most facility location problems the outcome takes into consideration 
various requirements such as minimizing social cost (in the described setting, the cost of a 
single participant is her distance to the closest facility; the social cost is the sum of the all 
participants' costs), minimizing the maximum distance (the highest individual cost) or 
minimizing the maximum load (in the described setting, the load of a facility is the number of 
participants for which that facility is the closest). 
 It is interesting to note that several social choice problems, when extended to a 
multidimensional space, can be viewed as facility location problems: 
 
 “many social choice problems can be interpreted as “facility location” problems when viewed as 
choice in a higher dimensional space, such as selection of political/committee representatives, product 
design, and the like” [3] 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 
2 Algorithmic Mechanism Design 
 
 
 Game theory is the field of study that focuses on strategic decision making, mainly in a 
socio-economic context. Nobel prize co-winner R.B. Myerson describes it as “the study of 
mathematical models of conflict and cooperation between intelligent rational decision-makers. Game 
theory provides general mathematical techniques for analyzing situations in which two or more 
individuals make decisions that will influence one another's welfare” [4]. The name of the field 
refers to mathematical objects known as games, which formalize interactions between 
participants (agents). 
 Mechanism design is the branch of game theory which considers the solutions to a 
certain class of games, that have the following characteristics: 
 

1. they involve  multiple self-interested agents, each with private information (their 
preferences) 

2. the game designer has control over the structure of the game 
3. the game designer is focused on the outcome of the game 

 
 In algorithmic mechanism design, the focus is partially related to the implementation 
of those solutions, thus it inherits from mechanism design and computer science. The name 
(algorithmic mechanism design) was first coined by Noam Nisan, who describes mechanism 
design as “rather unique within economics in having an engineering perspective” [5]. Indeed, the 
field is concerned with both economic aspects (e.g. social welfare, individual incentives to 
strategize, etc.) and computational aspects (e.g. running time, approximation ratios, etc.) of 
the solutions. 
 
 
2.1 The Social Choice function 
 
 
 Consider the following setting: a set of n agents I, a set of p alternatives A, and a set of 
preferences over the alternatives L. We consider the simplest definition of 'preferences', and 
view them as linear rankings of the alternatives: ' < ' is a total order over the alternatives (for 
every couple (a, b) of alternatives in A, there exists an ordering 'a < b'  (b is preferred to a) or 
'b < a' (a is preferred to b) denoting preference for one over the other). 
 
 
Definition: a social welfare function is a function that aggregates the preferences of all 
participants into a single preference ordering over the set of alternatives 
  F: Ln → L 
 
Definition: a social choice function is a function that aggregates the preferences of all 
participants into a single alternative 
  F: Ln → A 
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 The more general version of Arrow's theorem states that any social welfare function 
where card(A) › 2, that satisfies unanimity and I.I.A., is a dictatorship (i.e. there exists a voter i 
such that regardless of the preferences of other voters, societal preference will be given to his 
ordering; in other words, for all n-tuples in Ln, for any two alternatives a and b, if voter i 
prefers a over b, then  the resulting preference ordering will order a over b). 
 
 
2.2 Incentive Compatibility 
 
 
 If the agents are aware of the procedure that aggregates their preferences (which is 
often the case in public decision making), it is possible for them to report false preferences 
that might change the outcome in their favour. Taking this into account, we define the 
concept of incentive compatibility, which is that the procedure cannot be strategically 
manipulated by reporting false preferences; that is: every agent is at least as well off by 
reporting his true preferences. 
 Formally, a social choice function f is incentive compatible if and only if no agent with 
true preference <i , can strategically manipulate it by reporting <i’ and change the outcome 
from a to b where b i> a. This constraint is equivalent to the monotonicity of the function: 
 
f is monotone <=>        f (< , <i ) = a and f (< , <i’) = b    then    b <i a and a <i’ b 
   <=>        f is incentive compatible 
 
Where (< , <i ) is an n-tuple in the domain of definition of f, such that voter i reports a preference 
ranking <i , and (< , <i’) is an n-tuple in the domain of definition of f, such that voter i reports a 
preference ranking <i’. 
 
 The Gibbard-Satterthwaite theorem is the counterpart of Arrow's theorem for social 
choice functions, it states that any incentive compatible social choice function where     
card(A) › 2 and where  for every alternative in A, there is a antecedent by the function in I (the 
function is onto, i.e. every alternative can be reached by a certain n-tuple of preferences) is a 
dictatorship. 
 
 
2.3 Mechanisms 
 
 
 At this point, it seems clear that our mechanisms will have to solve the dual problem of 
preference aggregation as well as information revelation. 
 In its most primitive form, a mechanism is a collection S of strategy sets (corresponding 
to the space of all possible actions that can be undertaken by a given agent) and an outcome 
function mapping n-tuples in S to an alternative in A (where is the set of alternatives). There 
is a conceptual distinction to be made between types and strategies; a type is an agent's own 
personal valuation of the alternatives, whether a strategy is an induced course of action an 
agent can take relating to the situation. 
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Definition: A mechanism M = ((Si)i∈N, g) is a couple of S, the Cartesian product of strategy 
sets Si for each agents i ∈ N, and an outcome function g: S → A. 
 
 The previous definition is very general; in a social choice setting, let us consider a 
special case of mechanism, where the collection S is equal to the set of agents' actual types (in 
our setting: preferences) and the outcome function is equal to the social choice function of the 
setting. This type of mechanism, in which agents reveal their types (truthfully or not) and the 
outcome procedure is the social choice function, is called a direct revelation mechanism, 
while all other mechanisms are indirect mechanisms. 
 
Definition: A direct revelation mechanism D = ((Θi)i∈N, f)  is a couple of Θ, the Cartesian 
product of type sets Θi for each agents i ∈ N, and a social choice function f: Θ → A. 
 
 To further understand mechanisms, we need to take a step back and look at them from 
a game theoretic perspective. In game theory, agents playing a game have sets of strategies at 
their disposal. A pure strategy is a deterministic strategy, whether a mixed strategy is an 
assignment of probabilities to a set of pure strategies. The equilibrium of a game arises when 
all the players are playing strategies which are best responses to each other (i.e. no agent has 
the incentive to change his strategy if the remaining players don't). A good explanation of the 
correlation between mechanisms and games is given in the paper Foundations of Mechanism 
Design, A Tutorial: 
 
 “In view of the definition of the indirect mechanism and direct revelation mechanism, we can 
say that a social planner can either use an indirect mechanism M or a direct mechanism D to elicit the 
information about the agents’ preferences in an indirect or a direct manner, respectively. As we 
assumed earlier, all the agents are rational and intelligent. Therefore, after knowing about the 
mechanism M = ((Si)i∈N, g) chosen by the social planner, each agent i starts doing an analysis 
regarding which action si will result in his most favourable outcome [...] This phenomenon leads to a 
[...] Bayesian game of incomplete information that gets induced among the agents when the social 
planner invokes this mechanism as a means to solve the information elicitation problem.” [6] 
 
 Thus, a mechanism will implement a social choice function if it matches the outcome of 
that induced game (that is the equilibrium strategies of each agent) to the result of the social 
choice function. 
 
Definition: A mechanism M = ((Si)i∈N, g) implements a social choice function f if the game 
induced by M has a pure strategy equilibrium s* (the set of agents' strategies at equilibrium), 
and if the outcome of f is the same as the outcome of g for that equilibrium s*. 
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2.4 The Revelation Principle 
 
 
 This core result in mechanism design was first introduced in the context of dominant 
strategy equilibrium by Allan Gibbard in his 1973 paper Manipulation of voting schemes: a 
general result while discussing what would be referred to as the Gibbard-Satterthwaite 
theorem. Myerson, among others, later extended it to Bayesian Nash equilibria, however in 
order to avoid too many definitions, we choose to focus on its definition in the setting of 
dominant strategy equilibrium. A dominant strategy for agent i is the best possible strategy 
agent i can play regardless of what other players do. A dominant strategy equilibrium is a 
special case of pure strategy equilibrium for which the equilibrium strategies of the agents are 
dominant strategies. 
 
Definition: A mechanism M = ((Si)i∈N, g) implements a social choice function f in dominant 
strategies if the game induced by M has a dominant strategy equilibrium sd (the set of agents' 
dominant strategies at equilibrium), and if the outcome of f is the same as the outcome of g 
for that equilibrium sd. 
 
 The revelation principle for dominant strategy equilibrium states the following: if there 
is a mechanism M that implements a social choice function f in dominant strategies, then f is 
truthfully implementable in dominant strategy equilibrium by a direct mechanism. 
 
Definition: A social choice function f is truthfully implementable in dominant strategies, if 
the direct revelation mechanism D = ((Θi)i∈N, f) induces a game with a dominant strategy 
equilibrium sd, in which ∀i ∈ N, ∀θi ∈ Θi, sid(θi) = θi. 
 
Where sid(θi) is agent i's strategy in the equilibrium and θi a type in agent i's type space. 
 
 In other words, for the case of dominant strategy equilibrium, the revelation principle 
states that the set of all social choice functions implementable by direct mechanisms is equal 
to the set of all social choice functions implementable by indirect mechanisms. 
 
 The result is of major importance to the field, since it narrows the set of all possible 
mechanisms that would implement a certain social choice function to the set of direct 
revelation mechanisms that would implement it. Hence, if there is no direct revelation 
mechanism that can implement a social choice function, then that function is not truthfully 
implementable. 
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3 Mechanisms for Facility Location Problems 
 
 
 Now that we laid the ground with some important concepts of Social choice theory 
and Algorithmic mechanism design, we will examine the design of mechanisms for facility 
location problems. 
 
 
3.1 Single-peaked preferences 
 
 
 First off, since we want a non-dictatorial strategy-proof (incentive compatible) 
mechanism, we need to work around the Gibbard-Satterthwaite theorem by restricting the 
domain of agents' types. Interestingly, outside the scope of the theorem, “whenever there are at 
most two agents and three alternatives any preference profile is single-peaked” [7]. Thus, there is 
certain motivation to want to retain that property when there are more than 2 agents and 3 
alternatives. 
 
 Single-peaked preferences were popularized by Duncan Black in “On the rationale of 
group decision-making” (1948), where the author notes that in 'some important practical 
problems' agents' preferences will take the form of single-peaked. A preference profile is 
single-peaked when there is a linear ordering of the alternatives that is compatible with all 
the agents' preferences, i.e. it is possible to order the alternatives on a line in such a way that, 
for any agent, every alternative to the left of his most preferred alternative is ordered 
consistently with his preferences (that is they are ordered from least preferred to most 
preferred), and same goes to every alternative to the right (that is they are ordered from most 
preferred to least preferred). That most preferred alternative is referred to as the peak. 
 
 By restricting the domain of preferences of the agents in our setting, we are able to 
circumvent the Gibbard-Satterthwaite theorem ('intransitivities' or 'cycles' in preference 
ordering cannot be realised in single-peaked profiles) [8]. To complement this choice with an 
intuitive justification, consider an agent's preferred location for a facility, it seems coherent 
that the further away the actual location of the facility is, the less satisfied the agent will be. 
 
 
3.2 Median Mechanisms 
 
 
 Recall the facility location problem setting described earlier. We will consider a simple 
1 dimensional scenario, where a single facility has to be placed on a line. The game designer 
has to ask agents to reveal their most preferred location for the facility (in practice, it will 
most often be their own location). He announces that the procedure for aggregating 
preferences will take the average of their preferences. Also, consider that the agents have 
some information on other agents' locations. Is that procedure strategy-proof? No, since it is 
possible for an agent to manipulate the average by reporting an untruthful location, and thus 
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bias the location of the facility in his favour. 
 
 To achieve truthfulness, we will have to use a median mechanism, since “every onto 
strategy-proof social choice function on a single-peaked domain is a generalized median voter scheme” 
[9]. In the previous example, a procedure that would aggregate agents' preferences by taking 
the median would be a simple example of a median mechanism: no agent has the incentive to 
misreport his preference, because the only way for a single agent to manipulate the median 
would lead to the median being further away from the agent's actual preferred location. 
Interestingly, the mechanism is also group strategy-proof, but we won't dwell too long on this 
notion; suffice to say that no coalition of agents has the incentive to report a set of preferences 
that will produce an outcome such that every agent in the group will be better off. 
 
 
3.2 Percentile Mechanisms 
 
 
 There are multiple ways to extend such mechanisms to additional dimensions and 
facilities [8]. In 2009, Ariel D. Procaccia and Moshe Tennenholtz came up with approximation 
mechanisms that remained group strategy-proof while providing closer to optimal results. 
 
 For instance, the median mechanism in the above example gives an approximation 
ratio of 2 for the maximum load. Approximation ratios are ratios of the worst case result in 
the current setting (in the example: consider a case where the median is as far away from the 
average as possible) by the optimal result (in the example: the average). Since no better 
approximation ratio can be achieved by deterministic mechanisms [10], Procaccia and 
Tennenholtz introduce, for this basic setting, the following randomized mechanism: the 
mechanism will return the location of the left-most agent with probability 1/4,  the location of 
the right-most agent with probability 1/4, and the average location with probability 1/2. The 
mechanism is still (group) strategy-proof, since it partially relies on the first and last statistics 
of the space of agents' locations (when ordered on the line, the left-most location is the first 
order statistic, and the right-most is the last); however the approximation ratio is now: 

 
[1/4 * d + 1/2 * d/2 + 1/4 * d] / d = 3/2 

 

Where d is the distance between the left-most and right-most location in the space of agents' locations. 
 
 More recently [3], Xin Sui, Craig Boutilier and Tuomas Sandholm came up with 
another form of generalized median mechanisms, percentile mechanisms. They too rely on 
selecting certain statistics in order to retain group strategy-proofness even when extended to 
multi-dimensional and multi-facility scenarios. Consider all agents' locations ordered on a 
dimension. The mechanism will return percentiles (corresponding to the position of an agent 
on a given dimension) for every facility, per dimension. Back to our example, the simple 
median mechanism in the example is viewed as a (0.5)-percentile mechanism since it returns 
the 50th percentile (i.e. the median). 
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 Finally, there are still more ways to view/extend the acclaimed class of generalized 
median mechanisms (e.g. in Moulin's On strategy-proofness and single peakedness, 1980). It is 
interesting to note that these generalizations each provide very good results (in terms of 
approximation, computational time, etc.) for different considerations and types of facility 
location problems, some giving extremely good results for a very narrow range of problems 
while others may give slightly less good results, but for a broader class of problems. 
 
 
3.3 Optimization of Percentile Mechanisms 
 
 
 We choose to focus on percentile mechanisms because of their practical superiority, in 
certain scenarios, over other kinds of generalized median mechanisms. Indeed, we can 
empirically derive percentiles from 'real world' data (instead of getting them through worst-
case analysis of each scenario) and produce mechanisms that will provide far better results, 
especially in multi-dimensional and multi-facility settings. To make this class of mechanisms 
so adaptable, we provide several algorithms to derive the optimal percentiles of such 
mechanisms from sample data. 
 Every algorithm takes a set of sample profiles corresponding to individuals 
preferences, a number of dimensions to be considered (the samples should provide consistent 
locations for the agents, i.e. they should give the location of every agent on every dimension 
considered), the number of facilities to be placed, and the distance metric, which can be 
Euclidean or Manhattan (again, since those are the most common in practice). The algorithms 
are tested, at first, on artificially produced samples, derived from a particular distribution that 
is observable in practice (e.g. a city's population geographical organisation might closely 
resemble a Gaussian distribution with several clusters). 
 The first algorithm was developed by Xin Sui and takes the following approach: it goes 
through every possible combination of percentiles at a given level of discretization (i.e. we 
define the notion of a step as how much 'space' there is between a considered percentile and 
the next, so for example, with a step of 20, the percentiles considered are the first, the 20th, 
40th, 60th, 80th and last) finding the best combination to minimize social cost, then reiterates 
the same process but with a smaller step and in the bounds defined in the previous process 
(e.g. if the 40th percentile was found to be the best position of a facility for a given dimension 
with a step of 20, the next iteration will go through percentiles 20 to 60 with a smaller step); so 
on until the desired precision. This algorithm has been referred to as the abstraction method, 
and takes exponential time to compute the optimal percentiles for the given scenario. 
 It was first conjectured that the social cost function of the facilities' locations admitted a 
single local minimum (that is the mapping by the social cost function of the optimal location 
of the facilities), and it thus seemed like a logical step to implement faster algorithms that 
would take advantage of that fact by performing a local search over the function. However it 
turned out this was not true in theory, but since scenarios in which the social cost function 
admits several local minima are relatively unlikely to happen in practice, and since the local 
search algorithms can be run several times from random initial facility locations, there still is 
a strong incentive to develop these metaheuristics. 
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3.4 Local Search Algorithms for Optimizing Percentile Mechanisms 
 
 
 There is a multitude of ways of approaching the implementation of the local search 
perspective to the problem of finding the optimal percentiles for these mechanisms, we will 
describe 3 different algorithms and conclude on their performance. 
 
 A note on the main data structure used, the position matrix. The location of the 
facilities on every considered dimension are stored in this two dimensional array, the first 
dimension recording the facilities and the second keeping track of the position of a facility on 
each dimension. 
 
 Every algorithm starts by creating a random position matrix, and ends up with a 
positional matrix containing 'the close to optimal' percentiles for the location of every facility. 
They all integrate the (local search) notion of a step, which is the distance between considered 
percentiles, that will be reduced iteratively until the desired degree of precision is reached. 
Since they have different ways of getting to the same result, we will be concerned by 
computational time and precision of the results. 
 
 
3.4.1 Greedy local search 
 
 
 This algorithm starts with a random position matrix and computes the induced social 
cost. It then does so for every neighbouring matrix (a neighbouring matrix is one that differs 
by a single value such that that value [which is the position of a facility on a single 
dimension] is either a step to the left of the original one [rounded to the first percentile if the 
computed value is negative] or a step to the right [rounded to the last percentile if the 
computed value is greater than the total number of agents]). It then moves to that matrix and 
reiterates this process until reaching a positional matrix that cannot improve for the given 
step. The step is then reduced and the process reinstantiated. 
 The name comes from the fact that a greedy method is used while local searching, the 
best neighbouring matrix is chosen. 
 
 
3.4.2 Coordinate local search 
 
 
 This algorithm starts with a random position matrix. It then proceeds systematically 
through every value in the matrix, scanning at first the whole considered dimension 
according to the step (recall the abstraction method), computing the social cost for every 
considered percentile, then adopting the best percentile (position) before moving on to the 
next value in the position matrix (this is very different from the greedy search that computes 
the social costs of all of its neighbours before updating its position). Once it has traversed the 
matrix once (and possibly 'moved' several times), it does so again until the position matrix 
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converges for the given step. When reiterating the process for the next step, it doesn't scan the 
whole dimension again, but a range defined by the previous step (this is similar to the 
abstraction method). 
 The name comes from the fact that the whole dimension is searched over instead of 
just neighbouring positions. 
 
 
3.4.3 Strict convergence local search 
 
 
 This algorithm starts with a random position matrix. It then takes a slightly different 
approach than the previous 2 algorithms when traversing the matrix. In fact, it will go 
through a single facility, and for each of its dimensions, compute the social cost for its current 
position, for the position a step to its left (rounded to the first percentile if necessary), for the 
position a step to its right (rounded to the last percentile if necessary), then update to the best 
position and proceed to the next dimension. However, instead of proceeding to the next 
facility, it will repeat the same procedure for the current facility until it converges before 
moving on to the next facility. Once it has traversed the position matrix once, it will repeat the 
same process until the whole matrix has converged for the given step. Again, the step is then 
reduced and the procedure reinstantiated. 
 The name comes from the fact that we not only wait for the whole positional matrix to 
converge (as in the coordinated local search), but also each facility. This might provide more 
robustness in higher dimensional or facility spaces. It is also possible to consider a 
coordinated version of this algorithm. 
 
 
3.4.4 Results 
 
 
 The algorithms were written in the C++ language, the results are consigned in 
appendix A. Each was run a 100 times for various settings specified in bold. For instance, 
Gaussian-2D-3F-L2-101a-100s translates to the setting where test samples were produced 
using the Gaussian distribution, with 2 dimensions to consider, 3 facilities to place, the 
distance metric is L2 (Euclidian), 101 agents playing, and the algorithm was fed 100 of the 
samples. The table presents the minimum social cost found across the 100 tests, the 
maximum, average and standard deviation of the social cost, as well as the average running 
time. 
 
 First off, every algorithm eventually finds the optimal solution, as presented in the 
'minimum' column; note that it is the same found by the abstraction method. The coordinated 
local search algorithm has a higher 'fail rate' than the others since it boasts a higher maximum 
and standard deviation than the others, however is the fastest when the number of 
dimensions or facilities increases. The greedy local search method seems to provide the most 
consistent results, however becomes slower as time increases. As conjectured, in higher 
dimensions, the strict convergence algorithm provides a blend of precision and efficiency. 
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4 Approximate Single-Peaked Preferences 
 
 
 The results of these heuristic algorithms are pretty satisfactory; we can build close to 
optimal strategy-proof mechanisms in reasonable time assuming we have access to 
preference data that we can consider single-peaked. However, real world data might not be 
as friendly as the manufactured samples we used. 

Throughout this part, we will be working with actual Irish election data from Dublin 
West, courtesy of www.dublincountyreturningofficer.com. Our objective is to find an 
interpretation of the voter's preferences, such that we can consider the data single-peaked 
consistent. 
 
 
4.1 Checking Single-Peakedness Consistency in a Profile 
 
 
 The Irish election data from Dublin West contains partial orderings of the 9 candidates 
to be elected by about 50,000 voters. That is, every voter has ranked at least one of the 
candidates. We start by extracting a sample of all the total orders over the candidates; that is 
only the preference rankings of voters who ordered all 9 candidates. This results in a profile 
of 3800 complete rankings. 

We now proceed to find an axis with respect to which the voters in the profile have 
single-peaked consistent preferences. In their paper “Single-peaked consistency and its 
complexity” [11], Escoffier, Lang and Ozturk describe an algorithm to build such an axis from 
a profile. 
 

We provide a brief rundown of the algorithm with respect to our implementation: the 
input is a profile of preference orderings, and the output will be either a consistent axis or a 
contradiction in the profile that prevents the formation of such an axis. The algorithm builds a 
partial axis from its endpoints, iteratively placing candidates from conditions imposed by 
rankings in the profile. At each iteration of the build, the precondition is that all orderings in 
the profile are consistent with the current partial axis, and the post condition is the same; 
when contradictory conditions are found, the algorithm terminates. During an iteration, we 
start by finding the set L of least preferred candidates in the orderings, that have not yet been 
placed on the partial axis; thus L is the junction of singletons, one per preference ranking, 
containing, out of the remaining candidates to be placed on the axis, the one ranked last by 
the considered voter. The candidates in L are then carefully placed on the partial axis: when 
there is one or two candidates in L, we check if there is an ordering that requires (in order to 
remain single-peaked consistent with respect to the partial axis) these candidates to be placed 
before the left endpoint (or any value that has been placed before it) or before the right 
endpoint. A contradiction arises when two orderings require a candidate to be placed at both 
sides at the same time, when card(L) › 3 (since at most 1 candidate in L can be placed before 
one of the 2 endpoints), or when a specific organisation of the candidates is required by an 
ordering, and that specific organisation cannot be respected by at least one of the rankings. 
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We run the algorithm on our profile to find out, with not much surprise, that it is not 
strictly single-peaked consistent. Therefore, we have to turn our attention to methods of 
single-peakedness approximation in order to find that underlying quality in our profile. 
 
 
4.2 Definitions of Approximate Single-Peakedness 
 
 
 Multiple ways of approximating single-peaked preferences have been proposed [12], 
we explain the 'margin of error' that is allowed by a few of these notions for the profile to be 
approximately single-peaked with respect to it. 
 
k-Maverik the profile is k-Maverik single-peaked if it is single-peaked 

consistent by removing at most k orderings (votes) from the profile 
k-Candidate Deletion the profile is k-candidate deletion single-peaked if it is single-

peaked consistent by removing at most k candidates from the set 
of all considered candidates 

k-Local Cand. Deletion the profile is k-local candidate deletion single-peaked if it is single-
peaked consistent by removing at most k candidates from each of 
the orderings in the profile 

k-Global Swap the profile is k-global swap single-peaked if it is single-peaked 
consistent by performing at most k adjacent swaps (that is 
swapping two adjacent candidates in a preference ordering) in the 
whole profile 

k-Local Swap the profile is k-local swap single-peaked if it is single-peaked 
consistent by performing at most k adjacent swaps in each 
ordering 

k-Additional Axes the profile is k-additional axes single-peaked if it is possible to 
partition the voters into at most k clusters, in which all the 
candidates are single-peaked consistent with respect to a particular 
axis 

 
    In order to find a reasonable method of approximation (perhaps by combining several of 
these notions), we consider several ways in which our electoral data might have single-
peaked qualities. First off, it seems reasonable that voters have different concerns regarding 
the candidates' policies (e.g. certain voters might rank candidates according to their 
environmental views, to their policy on taxes, etc.); it is with that respect possible to have 
several clusters dividing voters by which issue they find the most important. We choose to 
adopt the k-Additional Axes method in order to build these clusters and find the axis, that 
might represent a particular ordering of candidates (representative of how they differ on a 
given socio-political issue). However, those clusters do not purely contain voters with a single 
issue in mind and there might be some 'noise' in the preferences (e.g. people might not have 
the same understanding of that issue, etc.), thus we want to account for that margin of error. 
Since we consider individual orderings, the k-local candidate deletion and k-local swap 
methods come to mind. Beyond their conceptual difference, they differ by how much 
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freedom in consistent rankings these methods induce: for a fixed axis and a given k, the set of 
all rankings that can be k-local candidate deletion single-peaked consistent contains the set of 
all rankings that can be k-local swap single-peaked consistent. Therefore, we choose to focus 
on the k-local candidate deletion method to filter rankings when constructing those clusters, 
however we will include exact single-peaked filtering for reference. Finally, since we are 
going to use a greedy method to build these clusters (the process of building the optimal 
clusters is NP hard) that might not be optimal and we might still get some high level noise 
outside these clusters (e.g. voters who chose their candidate ordering for more obscure 
reasons, voters who ordered candidates in a blend of ways that prevent our 'accounting for 
noise in the clusters method' to find which underlying feature is the most important for them, 
etc.), we might also consider only covering 80%-99% of the voters in our profile; hence we 
choose to keep k-Maverik in mind for some high level filtering of the more peculiar 
orderings. 
 
 
4.3 Branch and Bound Algorithm to construct Single-Peaked Axes 
 
 
 Using a similar method of partial axis construction to the one presented earlier [11], we 
develop a branch and bound algorithm that constructs a tree in which each node inherits a 
partial axis from its parent, the first parent possessing the null axis. 
 For a given parent, we build its children nodes by considering every possible 
combination of candidate placement on the parent's partial axes, with the following 
restriction: only 2 candidates* can be placed at the 'current endpoints' of the partial axis 
(where those are the first spots available in the axis before the actual endpoints, so for the first 
generation, the current endpoints are the actual endpoints of the axis, for the second 
generation, they are the positions one after the left endpoint and one before the right 
endpoint, and so on). For each possible child axis, we filter the candidates who were 
consistent with its parent, by using either exact single-peakedness filtering or k-local 
candidate deletion filtering; hence at each node we keep track of all the preference orderings 
that are consistent (for some measure of single-peakdness) with the partial axis defining that 
node. The number of consistent orderings in a node gives us an upper bound on the number 
of consistent orderings in the leaf nodes (nodes at the bottom of our tree, i.e. that have 
complete axes) of its induced subtree. 

We use bounding to prevent going into subtrees with an upper bound lesser than our 
currently defined lower bound. To traverse the least nodes possible while reaching for a leaf 
with a better lower bound (that is, explore the less axes possible), we use a greedy method for 
selecting which child is going to be traversed first: children are ranked by upper bound, they 
will be traversed (or not) from the highest upper bound to the lowest (so, heuristically, the 
subtree that has the greatest likelihood of containing the leaf with the maximum lower bound 
will be traversed first). The currently defined lower bound will at first be 1, to allow the 
algorithm to get to the first leaf (as defined by the greedy method); it will then be updated to 
that leaf's number of consistent preference rankings (since the axis in a leaf is not partial 
anymore, that number is now a lower bound on the greatest number of consistent preferences 
for an axis in our profile). 
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After traversing the whole tree, branching and bounding, we end up with the biggest 
cluster of preference rankings that are consistent with a single axis in the profile, its size being 
the final lower bound remaining. 
 
 
4.3 Results 
 
 
 Results are confined in appendix B. We first run the algorithm on our data for various 
settings of k (appendix BI). For k=0, i.e. no approximation (we use exact single-peakedness 
filtering to create the children nodes), we find out that the biggest cluster contains 0.8% of the 
preference rankings. Thus, our second level of approximation, k-local candidate deletion 
filtering, is definitely a must. Note the resulting axis: 1 2 3 4 5 6 7 8 9; this ordering can 
probably be explained by the fact that the candidates were already ordered by the Dublin 
West County administration in a certain way. 
 

With k=1, the biggest cluster covers 4.5% of the voters; this is still not enough to use k-
additional axes approximation, since we most certainly will end up with more than 50 axes to 
cover around 80% of the votes (however this is better than with no approximation, where we 
might have needed over 2000 axes). 

With k=2, we can cover 14% of the voters with a single axis. We thus choose to 
iteratively rerun the algorithm on the remaining candidates (the profile minus the candidates 
in the cluster obtained at the previous iteration) until we cover around 80% of the voters (this 
is the greedy method for cluster building we alluded to earlier). The results at each iteration 
are in section BII of the appendix. It takes 14 clusters to cover as many votes; at this point 
considering k-additional axes with 14 different axes seems plausible. 

With k=3, the biggest cluster covers 32% of the votes. We rerun our algorithm in the 
same manner as before; the results are assigned to section BIII of the appendix. This time, 
only 6 axes are necessary to cover over 85% of the votes. 

 
We choose to stop at k=3, because deleting over a third of the candidates in each 

preference ranking doesn't meet our standards of approximation anymore. The best results 
we have so far allow us to cover around 80% of the votes using 3 methods of approximation: 

 
(1) The profile is (14-additional axes, 2-local candidate deletion, 777-Maverik) 

approximately single-peaked. 
(2) The profile is (6-additional axes, 3-local candidate deletion, 746-Maverik) 

approximately single-peaked. 
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Conclusion 
 
 
 Final words are hard to find when it comes to make conclusions on ongoing research. 
However, even though we explored only a few combinations of methods of single-peaked 
approximation (there is yet to find the optimal one, or to provide an algorithm to build the 
optimal one from sample data), or might have omitted to provide a way of carrying over 
electoral data for the design of a percentile mechanism, we might have given an appreciation 
for the empirical research that can be done in the field of Algorithmic Mechanism Design. 
 
 Where a lot of research in the domain is constrained to proving abstractly what is 
possible to be defined/computed in relation to concepts such as generalized median 
mechanisms or approximate single-peaked preferences, the research we exposed in this paper 
takes a semi-empirical approach to these notions, which is more prone to see its results 
applied. From the percentile mechanisms we mentioned, through the local search algorithms 
to optimize those, to our triple approximation implemented in the branch and bound 
algorithm; while thinking about constructing optimal ways to resolve the problems at hand, 
we kept a keen eye on what it is we hope to accomplish. 
 
 With this in mind, we can eventually hope to circumvent the famous impossibility 
theorems (Arrow, Gibbard-Satterthwaite), and develop methods to produce strategy-proof 
and close to optimal mechanisms for any social choice problem that can be related to a multi-
dimensional facility location problem (e.g. elections, auctions, etc.). 
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Appendix A 
 

 
Local Search Algorithms - Table of Results 

      
 

Gaussian-2D-3F-L2-101a-100s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction 100.213         
Local-greedy 100.213 101.147 100.4968 0.3857244 0.9317 
Local-coordinate 100.213 101.94 100.72913 0.488497338 1.0237 
Local-strict 100.213 101.07 100.54904 0.391271972 1.0498 

 
Uniform-2D-3F-L2-101a-100s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction 23.4709         
Local-greedy 23.4709 23.7029 23.506644 0.053286781 0.9046 
Local-coordinate 23.4709 23.8311 23.540162 0.079359635 1.0012 
Local-strict 23.4709 23.7029 23.521158 0.066762323 1.0094 

 
GaussianMixture-2D-3F-L2-101a-100s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction 126.034         
Local-greedy 126.034 126.051 126.04046 0.005961865 0.882 
Local-coordinate 126.034 133.094 126.31488 0.816948217 1.0084 
Local-strict 126.034 126.051 126.03973 0.005361394 0.9657 

      
 

Gaussian-4D-2F-L1-101a-100s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction 423.894         
Local-greedy 423.894 432.973 425.11215 2.864318575 1.5331 
Local-coordinate 423.894 436.023 426.57497 3.819665902 1.4025 
Local-strict 423.894 433.003 424.63979 2.333742861 1.5212 

 
Uniform-4D-2F-L1-101a-100s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction 86.2768         
Local-greedy 86.2768 87.0444 86.493337 0.21244066 1.4875 
Local-coordinate 86.2768 87.3388 86.557049 0.229784903 1.4102 
Local-strict 86.2768 86.9824 86.478491 0.196845946 1.5426 

 
GaussianMixture-4D-2F-L1-101a-100s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction 696.558         
Local-greedy 695.558 704.114 695.94496 1.498186964 1.9699 
Local-coordinate 695.558 709.406 696.89335 2.320999307 1.7979 
Local-strict 695.558 704.516 696.4562 2.356890641 1.878 

      
 

GaussianMixture-4D-3F-L2-101a-200s 

 
Minimum SC Maximum SC Average SC Std deviation of SC Average run time 

Abstraction n/a         
Local-greedy 385.805 386.054 385.84889 0.076142993 11.9074 
Local-coordinate 385.805 392.419 386.24143 0.904887395 9.2833 
Local-strict 385.805 389.638 385.93522 0.550739092 9.6035 
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Appendix B 
 
 

(I) Greatest cluster for the profile at a given k 
k Axis for biggest cluster Number of consistent preference orderings 
0 1 2 3 4 5 6 7 8 9  30 
1 8 7 6 5 4 3 2 1 9  170 
2 8 7 6 3 5 4 2 1 9  536 
3 8 7 5 3 6 4 2 1 9  1198 
      

(II) Greatest cluster at each iteration, for k=2 
i Voters covered (cumulative) Number of consistent preference orderings for biggest cluster at i 
1 14.11% 536 
2 23.79% 368 
3 31.89% 308 
4 39.32% 282 
5 45.74% 244 
6 51.13% 205 
7 56.18% 192 
8 60.39% 160 
9 64.47% 155 
10 68.05% 136 
11 71.45% 129 
12 74.42% 113 
13 77.08% 101 
14 79.55% 94 
      

(III) Greatest cluster at each iteration, for k=3 
i Voters covered (cumulative) Number of consistent preference orderings for biggest cluster at i 
1 31.53% 1198 
2 50.08% 705 
3 62.79% 483 
4 73.26% 398 
5 80.37% 270 
6 85.66% 201 
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