
Universal�antification and Implication in miniKanren

ENDE JIN, University of Toronto, Canada

GREGORY ROSENBLATT, University of Alabama at Birmingham, USA

MATTHEW MIGHT, University of Alabama at Birmingham, USA

LISA ZHANG, University of Toronto Mississauga, Canada

We present constructive universal quanti�cation and implication in miniKanren using the goal constructors

(forall (v) domain goal) and (implies goal goal) . Our implementation is capable of solving

rudimentary logic problems while reasoning about equality, disequality, type constraints, and user-de�ned

relations. The key idea behind handling a universal quanti�cation (forall (v) domain goal) is to �rst

run (exists (v) (conj domain goal)) to �nd a state describing some E in the domain that satis�es the

goal, then use a relative complement process to generate a goal relcomp describing the remaining space of E

not covered by that state, and then recursively search (forall (v) (conj relcomp domain) goal) . The

key idea behind handling an implication (implies A B) is to combine two strategies, depending on the

form of A . One strategy follows the classical logic rule that � → � is equivalent to ¬� ∨ �, and applies when

a goal A can easily be negated. The other strategy uses syntactic pattern-matching, and applies when the

antecedent goal A calls user-de�ned relations which match those appearing in the consequent goal B .

CCS Concepts: • Software and its engineering → Constraint and logic languages.

Additional Key Words and Phrases: miniKanren, logic programming, relational programming

1 INTRODUCTION
We present a method for implementing constructive universal quanti�cation and implication in the

constraint logic programming language miniKanren. In particular, we describe the goal constructors

(forall (v) domain goal) and (implies goal goal) , extending miniKanren’s existing set of goal

constructors like (fresh (v) goal) , which is synonymous with (exists (v) goal) . These two

new goal constructors allow miniKanren search to perform rudimentary theorem proving.

Here are some examples of the kind of goals that we can construct using forall and implies .

> (run 1 (a) (forall (v) () (== v a)))
'() ; no answers because no such "a" exists
> (run 1 () (forall (a) () (exists (v) () (== v a))))
'(()) ; an answer exists and no extra information in the answer
> (run 1 (a b) (forall (v) () (disj* (== v a) (=/= v b))))
'((_.0 _.0)) ; can be made true if a == b
> (run 1 (b) (forall (a) () (disj* (not-symbolo a) (=/= a b))))
'((#f)) ; can be made true if b == #f
> (run 1 (f) (implies (evalo f 1) (exists (a) (evalo f a))))
'((_.0)) ; f can be anything

Authors’ addresses: Ende Jin, University of Toronto, Toronto, ON, Canada, ende.jin@mail.utoronto.ca; Gregory Rosenblatt,

University of Alabama at Birmingham, Birmingham, AL, USA, gregr@uab.edu; Matthew Might, University of Alabama at

Birmingham, Birmingham, AL, USA, might@uab.edu; Lisa Zhang, University of Toronto Mississauga, Mississauga, ON,

Canada, lczhang@cs.toronto.edu.

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International”

license.

© 2021 Copyright held by the author(s).

miniKanren.org/workshop/2021/8-ART2

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

2:2 Jin et al.

Our motivation for introducing universal quanti�cation (Section 3) and implication (Section 4) is to even-

tually be able to synthesize provably correct programs from universal properties. For example, we would

like to be able to synthesize a provably correct sorting procedure from a universal speci�cation. Along with

an answer, we would also like to produce an independently checkable proof of the answer’s correctness, as

in Twelf and HOL [5]. As another example, we would like to prove theorems with computational content

as is done with popular proof assistants such as ACL2, Coq and AGDA. Provably correct programs may be

extracted from these proofs. Such a system could help programmers more easily write provably correct code.

To demonstrate progress towards these objectives, we include the following examples in Section 6:

• As a step towards synthesizing programs from universal properties, weworkwith a relational interpreter

in Section 6.3.

• We reason about a sorting relation in Section 6.4.

• We discuss examples of reasoning in the presence of non-termination in Section 6.2 and Section 6.3.

• We discuss our system’s relationship to intuitionistic logic, particularly regarding the Law of Excluded

Middle in Section 6.6 and Section 6.2.

Our work is related to that of Ma et al. [4] and Moiseenko [7], both of which implement variations of

universal quanti�cation and implication. Both works are discussed in Section 5. Our work di�ers in that we

aim for expressiveness in how these operations can be used (e.g. not being limited to strati�ed programs), and

thus our approach trades o� performance. We implement an experimental artifact
1
to illustrate our ideas.

2 BACKGROUND
We build on the �rst-order miniKanren implementation described in Rosenblatt et al. [8]. This implementation

makes it easier to analyze and manipulate goals. For example, our implementation needs to track the scoping

of logic variables, recognize when we’ve entered a forall scope, and syntactically match antecedent and

consequent goals that call user-de�ned relations.

We begin with some de�nitions consistent with typical miniKanren implementations, and note where our

interpretations di�er.

De�nition 2.1 (Literal Values L). We use L to denote the set of literal values in miniKanren. Our implemen-

tation of miniKanren supports numbers, symbols, booleans, strings, the empty list, and pairs. In other words,

for a literal value l ∈ L we have l = numbers .. | symbols .. | strings .. | #t | #f | ’() | (cons l l).

De�nition 2.2 (Logic Variables+ and Terms)). We use+ to denote an in�nite set of logic variables. Further,

the set of terms) is de�ned such that for t ∈) , we have either t ∈ + , t ∈ L, or t = (cons t1 t2) with

t1, t2 ∈)

De�nition 2.3 (Substitution, Top, Bottom). A substitution f is a function that maps logic variables to terms.

We represent substitutions using the notation f = [E1 ↦→ C1, ..., E= ↦→ C=]. Additionally, we use > to denote

the empty substitution, and ⊥ to represent failure.

De�nition 2.4 (State State). A state consists of a substitution, a set of type constraints, and a set of

disequality disjunctions. Our implementation of miniKanren supports the type constraints numbero , symbolo
, stringo , pairo and their negations (e.g. not-numbero).

De�nition 2.5 (Atomic Goal, Goals G). We de�ne an atomic goal to be an equality, disequality, or type

constraint. Moreover, we exclude cons from appearing in an atomic type constraint.

We de�ne G to be the set of all goals in miniKanren, with 6 ∈ G if 6 is atomic, 6 is an equality or disequality

constraint that uses cons , or g = (conj g g) | (disj g g) | (exists (x) g) | (Top) | (Bottom).
Here, (Top) is a goal that can be trivially satis�ed (i.e. running this goal makes no changes to the state).

We will sometimes represent this goal using the same symbol > used for empty substitutions. Moreover,

(Bottom) cannot be satis�ed (i.e. running this goal will result in no answers). We will sometimes represent

this goal using the symbol ⊥.

1
https://github.com/DKXXXL/fo-mKanren-to-LF

https://github.com/DKXXXL/fo-mKanren-to-LF

Universal �antification and Implication in miniKanren 2:3

Fig. 1. Steps in the universal quantification search algorithm.

We choose the goal constructor name exists rather than the more typical fresh to emphasize the logical

relationship with forall . In the following section, G may include new goals like universal quanti�cation,

implication and calls to user-de�ned relations according to the context.

Proposition 2.1 (Goal representation of a State). A state can be rewritten as a goal that represents the same

constraints as the state: when we run the goal, we should get the equivalent state back.

We use Proposition 2.1 throughout the paper, both implicitly to visualize states, and explicitly when we

manipulate these states.

3 UNIVERSAL QUANTIFICATION
This section introduces the goal constructor (forall (v) domain body) , where v is the universally

quanti�ed logic variable, domain is a goal that restricts the portion of E ∈ L that we consider, and body is a

goal that we wish for all choices of E in domain to satisfy. In the case where the domain is all of L, we use

the syntax (forall (v) () body) . We otherwise restrict domain goals to conjunctions and disjunctions

of atomic goals.

Figure 1 shows the steps involved in satisfying a universal quanti�cation goal:

(1) Domain Satis�ability Check First, we attempt to satisfy the goal domain . If domain is unsatis�able,

the universal quanti�cation succeeds vacuously. We describe the base case check in Section 3.1.

(2) Candidate Extraction Next, we attempt to satisfy the goal (exists (v) (conj domain body)) ,

yielding a stream of states where each expresses how body can succeed for some subset of E ∈ (⊂ L.

If this stream is empty, the universally quanti�ed goal cannot be satis�ed unless there is a way to falsify

the domain. We describe the candidate extraction in Section 3.2.

(3) Relative Complement Suppose candidate extraction succeeded with a state (⊂ L. For the universally

quanti�ed version of the goal to succeed, we need to consider whether the remaining literals E ∈ L\(
satisfy the goal body . We derive a goal relcomp that describes this remaining search space. With

the complemented goal relcomp , we can continue the search recursively with the goal (forall (v)
(conj relcomp domain) body)) . We describe the relative complement algorithm in Section 3.3.

(4) Domain Relative Negation Check Rather than trying to ful�ll the body goal along the domain ,

an alternative approach is to falsify the domain. This strategy is described in Section 3.4.

The rest of this section describes each of these four steps. For consistency, we use E to denote the universally

quanti�ed logic variable, symbols 0,1, 2 to denote logic variables external to the scope of the forall and

symbols G,~, I to denote logic variables internal to the scope of the forall .
2
A proof of this universal

quanti�cation handling algorithm is in the Appendix A.1.

2
For example, consider the goal (exists (a b c) (forall (v) () (exists (x y z) etc ...)))

2:4 Jin et al.

Before presenting each of the four steps, we present two example forall goals to demonstrate the intuition

behind these steps.

Example 3.1. Consider the goal (forall (v) () (disj (== v 1) (=/= v 1) (== v 2))) . We use this

goal to illustrate steps 1-3 of the algorithm, and omit the relative negation check for now (since it produces no

answers). Here’s what happens when we run the goal:

(1) Domain Satis�ability Check: There is no explicit domain goal to check. The domain of E is L, which

clearly succeeds.

(2) Candidate Extraction: We check if (exists (v) (disj (== v 1) (=/= v 1) (== v 2))) succeeds.

This goal succeeds, and we obtain a state with the substitution [E → 1]. It remains to check the

remaining possible values of E , namely L \ 1
(3) Relative Complement: The returned state can be represented by the goal (== v 1) . The relative

complement of this goal (capturing the "remaining" E ∈ L) is the goal (=/= v 1) . We continue the

search with the reduced domain: (forall v (=/= v 1) (disj (== v 1) (=/= v 1) (== v 2)))

This recursive call to forall continues with the following steps:

(1) Domain Satis�ability Check: The goal (=/= v 1) succeeds.

(2) Candidate Extraction: We check if (exists (v) (conj (=/= v 1) (disj (== v 1) (=/= v 1)
(== v 2)))) succeeds. This goal should succeed, and we should obtain a state with the disequality

constraint E ≠ 1.

(3) Relative Complement: This state can be represented by the goal (=/= v 1) , whose relative complement

is (== v 1) . We continue the search with the reduced domain: (forall v (conj (== v 1) (=/=
v 1)) (disj (== v 1) (=/= v 1) (== v 2)))

Here, we see that the domain goal (conj (== v 1) (=/= v 1)) is not satis�able, meaning we have

reached our base case and obtain an answer.

Example 3.2. To demonstrate the way universal quanti�cation interacts with search, consider the following

goal with a universal quanti�er inside an existential quanti�er: (exists (a b) (forall (v) () (disj
(== v a) (=/= v b)))) . Readers well-versed in logic will see that this goal is satis�able with the state (==
a b) . We illustrate how our universal quanti�cation algorithm arrives at such an answer. For readability, we

only show the two search paths that produces the answer. For both paths, the following steps occur �rst:

(1) When entering the exists goal, miniKanren creates two fresh logic variables a and b .
(2) When entering the forall goal, we check that the domain is clearly satis�able.

(3) We run the candidate extraction goal (exists (v) (disj (== v a) (=/= v b))) .

One way to produce the answer is to use the �rst state from the candidate extraction, which is rewritten to

the goal (== v a) .

(4) The relative complement of (== v a) is (=/= v a) .
(5) We run the goal (forall (v) (=/= v a) (disj (== v a) (=/= v b)) .
(6) The domain goal (=/= v a) is satis�able.

(7) We run a second candidate extraction (exists (v) (conj (=/= v a) (disj (== v a) (=/= v
b)))) .

(8) The �rst state we obtain is (conj (=/= v a) (=/= v b)) .
(9) Its relative complement is (disj (== v a) (== v b)) .
(10) We run the goal (forall (v) (conj (=/= v a) (disj (== v a) (== v b))) (disj (== v a)

(=/= v b))) .

(11) The domain is equivalent to (conj (=/= v a) (=/= a b)) , and relative negation will falsify it to

extract an answer. One way to make this goal fail is to set (== a b) .

A di�erent way of obtaining the same answer is to use the second state we obtain from the initial candidate

extraction, rewritten to the goal (=/= v b) .

(4) The relative complement of (=/= v b) is (== v b) .
(5) We then run the goal (forall (v) (== v b) (disj (== v a) (=/= v b)) .

(6) The domain goal (== v b) is satis�able.

Universal �antification and Implication in miniKanren 2:5

(7) We run a second candidate extraction (exists (v) (conj (== v b) (disj (== v a) (=/= v
b)))) .

(8) The �rst state we obtain is (conj (== v b) (== v a)) , which is rewritten to (conj (== v b) (==
v a) (== a b)) to expose the implied constraint on 0 and 1.

(9) The relative complement is (conj (== a b) (disj (=/= v a) (=/= v b))) .

(10) We run the goal (forall (v) (conj (=/= v a) (disj (== v a) (== v b)) (conj (== a b)
(disj (=/= v a) (=/= v b)))) (disj (== v a) (=/= v b))) .

(11) The domain goal is not satis�able, producing another answer that is also (== a b) . This
happens to be the same answer that we obtained earlier, but we used a di�erent approach to arrive at

this answer.

3.1 Base Case
In this step, we check if the domain goal is satis�able by running the goal (exists (v) domain) . If domain
is not satis�able, then the goal (forall (v) domain body) succeeds vacuously and we get an answer.

If domain succeeds, then we need to continue to the candidate extraction step. Since domain will be

used again in the candidate extraction step, as an optimization, we prune disjuncts within domain that are

guaranteed to fail. For example, if domain is the goal (disj (=/= v v) (== v 1)) , then in the course of

checking its satis�ability, we will learn that (=/= v v) is not satis�able, and will simplify domain to the

goal (== v 1) before proceeding to the next step.

3.2 Candidate Extraction
In this step, we try to satisfy the goal (exists (v) (conj domain body)) , yielding a stream of states, and

we proceed with the next step for each of these states. To satisfy a precondition in the next step, we further

split each state into one or more disjunction-free states.

De�nition 3.1 (Disjunction-Free States). A state is disjunction-free if it can be expressed as a conjunction of

equality, type, and disequality constraints.

Recall that a state consists of a substitution (a conjunction of equality constraints), a conjunction of type

constraints, and a conjunction of disjunctions of disequality constraints. Each disjunction of disequality

constraints needs to be split.

Example 3.3. Consider the state denoted by the goal (conj (== v 1) (== x 1) (numbero a) (disj
(=/= v a) (=/= v b))) . This state is not disjunction-free, but can be split into two disjunction-free states:

(conj (== v 1) (== x 1) (numbero a) (=/= v a))
(conj (== v 1) (== x 1) (numbero a) (=/= v b))

3.3 Relative Complement
In this step, we begin with a disjunction-free state that satis�es (exists (v) (conj domain body)) , and

wish to obtain a relative complement of the state, namely a goal relcom that expresses the "remaining" part

of E ∈ L that isn’t already captured by this state. This idea is summarized in Proposition 3.1.

Proposition 3.1 (Relative Complement and the semantics of forall). Given a state from (exists (v)
(conj domain goal)) expressed as the goal state0 , and its relative complement relcomp (to be de�ned

in De�nition 3.2), we have that any state that is a answer to the goal: (conj state0 (forall (v) (conj
relcomp domain) body)) should also be an answer to the goal (forall (v) domain body) .

Intuitively, state0 assures that for a portion of E ∈ L, the goal body is true. The recursive call to forall
checks the remaining subset of L not covered by state0 .

De�nition 3.2 (Relative Complement). A relative complement '(g, E, {0,1, ...}, {G,~, ...}) of a goal g with

respect to the universally quanti�ed logic variable E , external logic variables {0,1, . . . }, and internal logic

variables {G,~, . . . }, is a goal relcomp with the following properties:

• Coverage and disjointness: For any choice of E0 ∈ L, the goal (conj g (== v E0)) succeeds if

and only if the goal (conj relcomp (== v E0)) fails.

2:6 Jin et al.

• External consistency: For any choice of external variables, i.e. 00 ∈ L, 10 ∈ L, . . . , if both g and

relcomp individually succeed, then the goal (conj g (== a 00) (== b 10) ...) succeeds if and

only if the goal (conj relcomp (== a 00) (== b 10) ...) succeeds.

Notice that since the internal variables can be di�erent for each choice of E , we don’t need to restrict the

choice of those variables.

Although the relative complements of a goal are not syntactically unique
3
, we provide a construction of a

goal that we refer to as the relative complement. We describe the construction for atomic goals, before working
up to any goals that come from a disjunction-free state. The �nal algorithm for the construction is described

at the end of this section.

De�nition 3.3 (Complement). A complement of a goal g is a goal g such that (disj g g) succeeds and

(conj g g) fails for any choice of the logic variables in g . In particular, for an atomic goal g , its complement

can be obtained by interchanging equality and disequality constraints, and type and not-type constraints.

Proposition 3.2 (Relative Complement of an atomic goal). A relative complement

'(g, E, {0,1, ...}, {G,~, ...}) of an atomic goal g ∈ A can be obtained as follows:

• If g references logic variables {G,~, ...} scoped inside the forall , then
'(g, E, {0,1, ...}, {G,~, ...}) = >.

• If g references E (but not G,~, ...), then

'(g, E, {0,1, ...}, {G,~, ...}) = 6.

• If g only references logic variables {0,1, . . . } scoped outside of the forall , then

'(g, E, {0,1, ...}, {G,~, ...}) = 6.

Example 3.4. We use Proposition 3.2 to construct the relative complement of the following goals with respect

to E , {0,1, . . . } and {G,~, . . . }:
• The relative complement of the goal (== v a) is (=/= v a) .

• The relative complement of the goal (conj (== b 2) (== v a)) is (conj (== b 2) (=/= v a) .

• The relative complement of the goal (pairo v) is (not-pairo v) .

• The relative complement of the goal (== a 1) is ⊥, because E is unconstrained in (== a 1) .

Next, we extend the relative complement derivation to a conjunction of atomic goals satisfying certain

conditions:

De�nition 3.4 (Conjunction-Only Goal C ⊂ G). A goal g ∈ C is conjunction-only if it is a conjunction of

atomic goals. Recall that an atomic goal disallows the use of cons .

Proposition 3.3 (Relative Complement of a Conjunction-Only Goal C). Suppose g ∈ C, with

g =
∧
8

U8 ∧
∧
9

` 9 ∧
∧
:

j:

where each U8 , ` 9 , j: ∈ A is atomic, the U8s reference only the variables {0,1...} outside the scope of the
forall , and the ` 9 s reference the universally quanti�ed variable E (and potentially {0,1...}), and the j:s

reference variables {G,~...} inside the scope of the forall .
Moreover, all implied constraints in g on the universally quanti�ed variable have been expressed in the

`8s, and likewise all implied constraints in g on the external variables have been expressed in the U8s. (For

example, if g contains the atomic conjuncts (= a v) and (= b v), then it also contains (= a b)).

Then the relative complement of g is: ∧
8

U8 ∧
∨
9

` 9

Example 3.5 (Relative Complement of Conjunction-Only Goals). Consider the relative complement of the

following goals with respect to E , {0,1, . . . } and {G,~, . . . }.
3
they are only unique up-to logical equivalence, but can have multiple syntactical form. (== a b) has (=/= a b) as

one relative complement, but also (conj (=/= a b) (== a a) as another

Universal �antification and Implication in miniKanren 2:7

• The relative complement of the goal (conj (== a 1) (=/= v b) (symbolo v) (== a x) is (conj
(== a 1) (disj (== v b) (not-symbolo v))) .

• The goal (=/= v (cons a x)) is not conjunction-only since it uses cons , so Proposition 3.3 does

not apply. The relative complement of this goal is not (== v (cons a x)) . Instead, the relative

complement should behave like the following (disj (not-pairo v) (conj (pairo v) (=/= (car
v) a))) —although we can’t use (car v) to destruct a logic variable directly.

• The goal (conj (== v a) (== v b)) has some implied constraints between the external variables a
and b , so Proposition 3.3 does not apply. Indeed, the relative complement of this goal is not (disj
(=/= v a) (=/= v b)) . It should instead capture the fact that (== a b) .

Unfortunately, the states we get from candidate extraction do not directly translate to goals that satisfy

the conditions in Proposition 3.3. In particular, a disjunction-free state might nevertheless have cons in its

equality and disequality constraints. To solve this issue, we extend the notion of logic variables to include

�eld projections of logic variables, such as (car v) , (cdr v) , and arbitrary nestings such as (car (cdr
v)) . We call these projected logic variables.

De�nition 3.5 (Projected Logic Variables + %
). We extend the set of logic variables + with its projection + %

,

where+ ⊂ + %
, and if E ∈ + %

, then (car v), (cdr v) ∈ + %
. To avoid confusion, we use the notations x.car ,

x.cdr to indicate (car x) , (cdr x) respectively. We extend the de�nition of substitution to allow projected

logic variables in the domain.

With these projected variables, we can rewrite states so that substitutions and disequality constraints never

involve cons .

De�nition 3.6 (Field projection form). A goal or state is in Field Projection Form if there is no mention of

cons anywhere in (the encoding of) the goal or state. Instead, we explicitly reference the components of any

cons . In our implementation, cons never appears in type constraints.

Example 3.6 (Field Projection). Consider the goal (== v (cons a (cons b c))) . We can rewrite this goal

in �eld-projected form: (conj (== v.car a) (== v.cdr.car b) (== v.cdr.cdr c) .

Moreover, consider the goal (=/= v (cons a b)) . We can rewrite this goal in �eld-projected form: (disj
(not-pairo v) (=/= v.car a) (=/= v.cdr b)) .

Proposition 3.4 (Extending Proposition 3.3 to Field-Projected Goals). We can apply the construction in

Proposition 3.3 to �nd the relative complement of a conjunction-only, �eld-projected goal g if for any

�eld-projected logic variable : (i.e. the goal refers k.car or k.cdr) the type constraint (pairo k) appears

in g .

Example 3.7 (Field Projected Relative Complement). Consider the relative complement of the following

goals with respect to E , {0,1, . . . } and {G,~, . . . }: (conj (=/= v.car a) (=/= v.cdr b) (pairo v)) . The

relative complement of this goal is (disj (== v.car a) (== v.cdr b) (not-pairo v)) . The reason why

the type constraint is required is because our system will translate a constraint like (== v.car a) back into

the following usual miniKanren goal: (exists (x) (== v (cons a x))) .

We summarize our relative complement implementation in Algorithm 3.1.

Algorithm 3.1 (Relative Complement of a Disjunction-Free State). We apply these steps to compute the

relative complement of a disjunction-free state:

(1) Apply �eld projection, and add any missing pairo type constraints.

(2) Make any implied constraints on the constraints on the universally quanti�ed and external logic

variables explicit.

(3) Remove internal logic variables from the state, and separate information related to v versus those

unrelated to v (to be able to apply Proposition 3.3).

(4) Split any newly-introduced disjunctions as necessary.

(5) Apply Proposition 3.2 on the atomic goals that mention v to obtain the desired goal.

A proof of this algorithm is attached in the Appendix A.2.

2:8 Jin et al.

With the relative complement relcomp , we can run the goal (forall (v) (conj relcomp domain)
body) . Notice that when running this goal, it is important to use the state containing any constraints related

to the external variables. If (conj relcomp domain) fails during the recursive step, we return the state with

these constraints on the external variables.

3.4 Domain Relative Negation
This section presents an alternative strategy to �nd answers to the goal (forall (v) domain body) . To
�nd these answers, we consider the external logic variables that are mentioned in the goal domain , and

�nd assignments for those variables that cause domain to fail. We �nd such assignments by running the

relative negation of the goal domain , obtained by �ipping the constraints that domain places on the external

variables. The approach is summarized in Proposition 3.5.

Proposition 3.5 (Domain Relative Negation and the semantics of forall). Suppose the relative negation of

the goal domain is the goal negdomain . Then any solution to the goal:

(exists (a b ...) negdomain)

should also be a solution for the goal (exists (a b ...) (forall (v) domain body)) .

De�nition 3.7 (Relative Negation). A relative negation # (g, {0,1, . . . }) of a goal g with respect to the

external logic variables {0,1, . . . } is a goal ¬g with the property that for any choice of external variables

00 ∈ L, 10 ∈ L, . . . , the goal (conj g (== a 00) (== b 10) ...) succeeds if and only if (conj ¬g (==
a 00) (== b 10) ...) fails.

To illustrate how domain relative negation can �nd answers that the previous sections miss, consider this

example:

Example 3.8. The goal (exists (a b) (forall (v) (conj (== v a) (=/= v b)) (=/= v v))) has a

domain goal (conj (== v a) (=/= v b)) that is satis�able, and will pass the domain satis�ability check.

Since the body goal (=/= v v) is clearly not satis�able, candidate extraction fails. However, the relative

negation of the domain goal is (== a b) . With this constraint, the forall goal can succeed vacuously.

Proposition 3.6 (Relative Negation Construction). Consider a goal g , which is a disjunction of �eld-projected,
conjunction-only goals:

g =
∨
=

©­«
∧
8

U=,8 ∧
∧
9

`=,9
ª®¬

where each U=,8 , `=,9 ∈ A is atomic (and possibly �eld-projected), and the U8s reference only the variables

{0,1...} outside the scope of the forall . Moreover, all implied constraints in g on the external variables

have been made explicit in the U8s.

Then the relative negation of g is: ∧
=

∨
8

U=,8

Proposition 3.6 provides an approach to negate goals that, when �eld-projected, only contain conjunctions,

disjunctions, and atomic goals. Any such goal can be written in disjunctive normal form.

A proof of this proposition is attached in the appendix.

4 CONSTRUCTIVE IMPLICATION
This section introduces the goal constructor (implies antecedent consequent) where antecedent and

consequent are goals. For antecedent goals that we can easily negate (like those in Proposition 3.6), we

can rewrite the implication goal to (disj neg-antecedent consequent) . We only negate goals that are

primitive constraints. This use of negation is su�cient for handling the primitive constraints because they

are decidable. Unfortunately, other goals, such as calls to user-de�ned relations, are not easily negatable.

Running these goals might not even terminate. To support a general treatment of implication, we supplement

Universal �antification and Implication in miniKanren 2:9

Fig. 2. Computation flow for miniKanren with constructive implication, with semantic solving on le� (blue)
and syntactic solving on right (green). The symbol ⊕ denotes mplus stream addition and diamonds represent
cond dispatch.

miniKanren’s pause function with an extra argument referencing the list of accumulated assumptions. Recall

that pause also takes the current state and a target goal , and is the heart of the miniKanren search

algorithm. Our implementation of pause interleaves two search strategies: semantic search (Section 4.1) and

syntactic search Section 4.2. A summary of the process �ow of the pause function is shown in Figure 2.

Example 4.1 (Semantic vs Syntactic Solving). As an example of semantic solving, the goal (implies (== a
1) (== a b)) can be rewritten to the goal (disj (=/= a 1) (== a b)) .

As an example of a goal that cannot be solved semantically, suppose we have a user-de�ned relation

dead-loop that does not terminate. The goal (exists (a) (implies (dead-loop 1) (dead-loop a))
should succeed with the substitution [0 ↦→ 1]. This goal cannot be solved using semantic solving, since the

antecedent goal is not negatable. However, syntactic solving will apply pattern matching to the antecedent

and consequent calls to dead-loop , succeeding with the state (== a 1) .

4.1 Semantic Solving
Semantic solving involves using miniKanren’s existing search strategy, and is triggered for all goals when

calling (pause asmpt state goal) . If goal is an implication (implies antecedent consequent) , we

want to apply the logic rule that � → � is equivalent to ¬� ∨ � as often as possible. However, we cannot

negate goals that call user-de�ned relations. To be more speci�c, in order for us to negate a goal, it must have

the property de�ned in De�nition 4.1.

De�nition 4.1 (Negatable). A goal g is negatable with the negatation ¬g if one of the following is true:

• g is an equaliy, disequality, type, or not-type goal. To obtain ¬g, swap equality and disequality relations,
and type and not-type relations.

• g is a conjunction of negatable goals. Here, ¬(conj g1 g2) = (disj ¬g1 ¬g2)
• g is a disjunction of negatable goals. Here, ¬(disj g1 g2) = (conj ¬g1 ¬g2)

2:10 Jin et al.

• g is an implication, of which the components are negatable. Here, ¬(implies g1 g2) = (conj g1
¬g2)

• g is an existential quanti�er with a negatable body. Here, ¬(exists (x) g) = (forall (x) ¬g)
• g is a universal quanti�er with a negatable body. Here, ¬(forall (x) domain g) = (exists (x)
(conj ¬domain ¬g))

To use the existing miniKanren search as much as possible, we split antecedent into a conjunction of a

negatable and unnegatable components (conj negatable unnegatable) . Our implication goal can then

be rewritten as (implies (conj negatable unnegatable) consequent) .

Suppose �rst that the negatable goal is nonempty. In this case, we apply the following proposition to

separately handle negatable and unnegatable .

Proposition 4.1 (Semantic Solving of Implication). Suppose negatable is nonempty. Then there are three

possible disjoint ways to satisfy the goal (implies (conj negatable unnegatable) consequent) :

(1) If negatable can be made to fail. To �nd a state that makes negatable fail, run the goal ¬negatable
.

(2) If it is possible to satisfy negatable , while making unnegatable fail. To �nd such a state, �rst

satisfy negatable , then run (implies unnegatable (Bottom)) . In other words, run the goal

(conj negatable (implies unnegatable (Bottom))) . The special consequent (Bottom) signi�es

failure, and is used by our system to trigger syntactic solving.

(3) If it’s possible to satisfy both negatable and (implies unnegatable consequent) . In other words,

run the goal (conj negatable (implies unnegatable consequent)) .

Notice that in the latter two queries we use the fact that in miniKanren conjunctions, the �rst conjunct is

always processed �rst. When processing the second conjunct (e.g. when pause is called with the second

conjunct goal), the information from the �rst conjunct is stored in the state.

Example 4.2. Consider the antecedent goal (conj (== x 1) (foo y) (disj (== y 2) (bar x y)))
where foo and bar are user-de�ned relations. The negatable part of this goal is the goal (== x 1) and the

non-negatable part is the goal (conj (foo y) (disj (== y 2) (bar x y))) .

Proposition 4.1 does not apply in the case that there is no negatable component to the antecedent in

(implies antecedent consequent) . If antecedent is not negatable at all, we need to run the goal

consequent . However, when we make the recursive call to pause , we add antecedent to the list of

assumptions. The assumptions are not used by the semantic solver, but the syntactic solver will make use of

this parameter.

Example 4.3. Consider the goal (implies (disj (== y 2) (bar x y)) (bar y y)) where bar is a

user-de�ned relation. Since the antecedent is unnegatable, we run this goal by running the consequent goal

(bar y y) with an additional assumption (disj (== y 2) (bar x y)) , triggering the syntactic solver.

4.2 Syntactic Solving
The syntactic solver is triggered when calling (pause asmpt state goal) where goal is a user-de�ned

goal or the special goal (Bottom) , and asmpt is nonempty. The syntactic solver iterates over the list

of assumptions asmpt , and checks whether the assumptions can be used to satisfy goal . For a simple

assumption, this check is done using an extended uni�cation algorithm that uses pattern matching on the

goals and assumptions (Proposition 4.2). For compound assumptions like conjunctions, disjunctions and others

goals, we break the assumption into parts and recursively handle each part (Proposition 4.3). When the list

of assumptions becomes empty, we try to unfold the user-de�ned relations in the initial assumption (see

Proposition 4.4).

The syntactic solver is recursive with the function signature (syn-solver asmpt init-asmpt state
goal) . When entering syn-solver from pause , the parameter init-asmpt is set to asmpt . We use the

variable name a to denote the �rst element of asmpt . We have two choices with respect to a : either we
actively apply the assumption goal a to make goal succeed, or we don’t apply a and use the rest of asmpt
. These two choices are re�ected by the ⊕ symbol on the right side of Figure 2.

Universal �antification and Implication in miniKanren 2:11

Actively using a to run goal is the core of the syntactic solver. We begin with the simplest case, where a
is a user-de�ned relation or Bottom .

4

Proposition 4.2 (Uni�cation with an assumption goal). A goal (Bottom) succeeds if and only if the

assumption a is (Bottom) . A goal which calls the user-de�ned relation (relation x1 x2 ...) succeeds

if and only if the assumption a is (relation y1 y2 ...) where x1 uni�es with y1 , and x2 uni�es with

y2 , and etc.

The above proposition serves as a base case for using an assumption to solve a goal. When an assumption

a is not a call to a user-de�ned relation, we need to split a into parts.

Proposition 4.3 (Compound assumptions). Suppose the assumption goal a is not a user-de�ned relation or

(Bottom) . Then the implication can be solved as follows.

• If a is the goal (conj a1 a2) , then we can treat a1 and a2 as two separate assumptions in the list

asmpt . Proceed as if a1 is the �rst element of asmpt , and a2 is in the rest of asmpt .
• If a is the goal (disj a1 a2) , then solving the goal is equivalent to solving the alternative goal

(conj (implies a1 goal) (implies a2 goal)) with reduced assumptions init-asmpt- .

• If a is the goal (exists (v) t) , then solving the goal is equivalent to solving the alternative goal

(forall v (implies t goal)) with reduced assumptions init-asmpt- .

• If a is the goal (forall (v) d t) , then we can treat the instantiated a (i.e. (implies d t)
[E ↦→ G]) as the replaced assumption and proceed. Here, the logic variable v is substituted with a fresh

logic variable x .
• If a is the goal (implies a1 b1) , then in order to use this assumption we need to satisfy a1 while

also satisfying goal with assumption (cons b1 init-asmpt-) where init-asmpt- is the reduced
assumption.

Here, the reduced assumption set init-asmpt- is the result of removing the current assumption. Removing

the current assumption is necessary to prevent in�nite looping when solving the equivalent new goal.

As we iterate over these assumptions in the list of goals asmpt , we recursively call the function syn-solve
, stripping o� the elements of asmpt in each iteration. However, we do not change the parameter init-asmpt
, leaving us with access to the list of initial assumptions when asmpt becomes empty.

When asmpt becomes empty, our search is not over. The user-de�ned relations in asmpt might still have

information that will help us in solving goal . The following example illustrates a case where unfolding the

de�nition of a relation is useful.

Example 4.4. Suppose we have the following relations:

(define-relation (foo x) (foo (cons 1 x)))
(define-relation (bar x) (foo x))

Then we would expect the goal (exists (x) (implies (foo 2) (bar (cons x 2)))) to succeed with

[G ↦→ 1]. The reason is that (foo 2) implies (foo (cons 1 2)) , which then implies (bar (cons 1 2)) .

Unfolding a relation in this way is valid under a closed-world interpretation of a relation de�nition, treating

it as an equivalence between a relation call and its body.

That is, a goal that calls the relation succeeds if and only if the body of the relation succeeds. This is

di�erent from a typical open-world interpretation of a user-de�ned relation as a de�nite Horn clause[1],

where the body implies the relation call, but the relation call doesn’t have to imply the body.

To be concrete, in Example 4.4, not only does (foo (cons 1 x)) imply (foo x) , but also (foo x)
implies (foo (cons 1 x)) .

Relation de�nitions can also be viewed as extending the logic with both a new introduction rule[2] and a

corresponding elimination rule[3].

We believe this interpretation of user-de�ned relations is a more convenient default for reasoning about

the relations we’re interested in, such as evalo , which are intended to be complete de�nitions.

4
Recall that the built-in equality, disequality, and type constraints are handled by the semantic solver.

2:12 Jin et al.

De�nition 4.1 (Unfolding). The unfolding of a goal g is a goal where every sub-goal that calls a user-de�ned

relation is replaced with its body.

Proposition 4.4 (Unfolding assumptions and goal). Any state that is a solution of the goal:

(implies (unfold asmpt) goal)

should also be a solution to the goal (implies asmpt goal) .

We use Proposition 4.4 when asmpt is empty, by unfolding init-asmpt , and calling pause with the

resulting goal (implies (unfold init-asmpt) goal) . We call pause and not syn-solve since the goal

(unfold init-asmpt) can have a negatable component, even when init-asmpt does not.

Example 4.5. To demonstrate the way the solver works, we trace through what happens when running the

goal from Example 4.4: (exists (x) (implies (foo 2) (bar (cons x 2)))) . We only describe the

search path that produces an answer:

(1) The entry point for solving the goal is a call to (pause ’() st (implies (foo 2) (bar (cons x
2)))) .

(2) Since the antecedent has no negatable component, we add the antecedent to the list of assumptions

and run (pause (list (foo 2)) st (bar (cons x 2))) .

(3) Both the syntactic and semantic solver will trigger. The syntactic solver fails. The semantic solver will

use normal miniKanren to expand the current goal, and calls (pause (list (foo 2)) st (foo
(cons x 2))) .

(4) Both the syntactic and semantic solver will trigger. In the syntactic solver, since the �rst assumption

(foo 2) is a relation, we try to use it to match (foo (cons x 2)) , which fails.

(5) Since the rest of the list of assumptions is empty, we unfold the assumptions and run the goal (implies
(foo (cons 1 2)) (foo (cons x 2))) .

(6) Again, the antecedent to the list of assumptions has no negatable part. Again, the syntactic solver

will trigger. Again, the �rst assumption (foo (cons 1 2)) is a user-de�ned relation. This time, the

assumption uses the same relation as the goal (foo (cons x 2)) , and the argument can be uni�ed

with [G ↦→ 1].

5 RELATEDWORK
The miniKanren version at http://github.com/webyrd/miniKanren-with-symbolic-constraints implements a

limited form of universal quanti�cation in miniKanren, introducing a goal constructor called eigen which is

analogous to fresh . In this implementation, variables introduced by eigen are compatible with equality

constraints but do not support type or disequality constraints.

Ma et al. [4] introduces _Kanren, which is inspired by _Prolog [6]. The work implements universal quan-

ti�cation by introducing the goal constructor called all . The only constraints implemented in _Kanren are

equality constraints, making it di�cult to express many of the queries we’re interested in. _Kanren also imple-

ments a limited form of implication, introducing the goal constructor assume-rel . With this implementation

of implication, the only goals supported in antecedent positions are relation calls and equality constraints. No

unfolding of antecedent goals is performed, which is consistent with an open-world interpretation of relations

de�ned as de�nite Horn clauses.

Moiseenko [7] implements strati�able, constructive negation in miniKanren, and builds universal quan-

ti�cation and implication operators in terms of negation. In contrast, our approach implements universal

quanti�cation and implication as the primitives, and we express negation in terms of implication. Our approach

has no strati�cation restriction on the use of negation, allowing more programs to be expressed. However, the

constructive negation approach [7] has a simpler implementation, and we believe it will generally run faster

on queries where both approaches provide answers. We use the test suite from Moiseenko [7] in Section 6.1.

6 EVALUATION
In this section, we demonstrate the capabilities of our universal quanti�cation and constructive implication.

As is miniKanren tradition, search can be slow. Still, we can express and run some interesting queries. We

note the performance characteristics as they come up.

Universal �antification and Implication in miniKanren 2:13

Table 1. Basic �antifier Examples from Moiseenko [7]. We use Greek le�ers U, V, . . . to represent query
variables, and always query for 1 answer.

Query Result Time (ms)

∀G .(G = U) () 3

∀G .∃~.(G = ~) (((_.0) .(>))) 1

∀G .∃~.((G = ~) ∧ (~ = U)) () 3

∀G .(U = (1, G)) () 22

∀G .∃~.(~ = (1, G)) (((_.0) .(>))) 1

∀G .∃~.(G = (1, ~)) () 4

∀G .(G ≠ U) () 3

∀G .∃~.(G ≠ ~) (((_.0) .(>))) 1

∀G .∃~.((G ≠ ~) ∧ (~ = U)) () 3

∀G .(U ≠ (1, G)) (((_.0) .(′_.0 ∈ 1

’(number? symbol? string?))))
(∃G .(U = (1, G)) ∧ ∀G .(U ≠ (1, G))) () 5

∀G .((G, G) ≠ (0, 1)) (((_.0) .(>))) 1

∀G .((G, G) ≠ (1, 1)) () 3

∀G .((G, G) ≠ (U, 1)) (((_.0) .(′_.0 ≠ 1))) 1

∃0.∃1.((U = (0,1)) ∧ ∀G .((G, G) ≠ (0,1))) ((((_.0._.1)).(′_.0 ≠′
_.1))) 2

All tests are conducted with a machine with Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 4

Core(s), 8 Logical Processor(s), with Physical Memory (RAM) 8.00 GB, running Racket v8.0[cs] inside WSL2,

Ubuntu 18.04.4 LTS.

6.1 Tests from Moiseenko [7]
In this section, we present test cases consistent with those from Moiseenko [7]. Recall that Moiseenko

[7] implements universal quanti�cation in terms of negation. We instead implement negation in terms of

implication and ⊥, encoding ¬� as � → ⊥.
First, we run the 15 basic universal quanti�er tests from Moiseenko [7], and present the results in Table 1.

These tests all use primitive constraints only. We use (run 1 ...) for each of the queries and �nd an answer

very quickly (within 22 ms). Moiseenko [7] does not report their OCanren implemention’s runtime, and we

did not implement their approach in Racket. However, we expect their implementation to be faster than ours.

Results of the form () indicate no answer. Results of the form ((var . constraints)) denote an answer

with query variable assignments in var and additional constraints on these variables in constraints (with

> indicating no constraints).

Next, we attempt the graph reachability example and the game-winning example from Moiseenko [7], both

presented in Table 2.

The graph test includes a graph with nodes ’(a b c d) with the relation edge denoting directed edges

between these nodes. We use implication to describe when a target node is unreachable from a source node.

(define-relation (edge x y)
(disj* (== (cons x y) (cons 'a 'b))

(== (cons x y) (cons 'b 'a))
(== (cons x y) (cons 'b 'c))
(== (cons x y) (cons 'c 'd))))

(define-relation (reachable x y)
(disj* (== x y)

(fresh (z) (edge x z) (reachable z y))))
(define-relation (unreachable x y)

(implies (reachable x y) (Bottom)))

2:14 Jin et al.

Table 2. Graph Reachability, Winning Example fromMoiseenko [7]. We use Greek le�ers U, V, . . . to represent
query variables, and always query for 1 answer.

Query Result Time (ms)

(unreachable c a) ((().(>))) 1

(reachable c a) () 0

(unreachable c U) (((_.0) .((′_.0 ≠′ 3) ∧ (′_.0 ≠′ 2)))) 46

(unreachable d U) (((_.0) .(′_.0 ≠′ 3))) 0

(unreachable U a) (((_.0) .(((′_.0 ≠′ 0) ∧ (′_.0 ≠′ 1)) ∧ (′_.0 ≠′ 2)))) 3614

(unreachable U b) (((_.0) .(((′_.0 ≠′ 0) ∧ (′_.0 ≠′ 1)) ∧ (′_.0 ≠′ 2)))) 506

(unreachable U c) (((_.0) .(((′_.0 ≠′ 0) ∧ (′_.0 ≠′ 1)) ∧ (′_.0 ≠′ 2)))) 4061

(winning c) ((().(>))) 7

(winning d) () 0

(winning a) We do not expect this query to terminate >3min

(winning b) We do not expect this query to terminate >3min

The game-winning test includes the same graph with positions ’(a b c d) with the relation edge
denoting directed edges between these positions, indicating movability, where two players take turns. A

position is a losing position if it has no moves, or has no winning move. A winning position is one that can

move to a losing position (for the next player).

(define-relation (winning x)
(fresh (y) (edge x y)

(neg (winning y))))

The game-winning example is used to demonstrate a non-strati�ed relation [7]. Our implementation doesn’t

require strati�cation, and can run queries over this relation. However, querying (winning ’a) or (winning
’b) will fail to terminate. For any query where the well-founded semantics[9] for negation would return

unknown, our system will fail to terminate.

Finally, we present one more test from Moiseenko [7]. Among the tests from constructive negation, the

only test that fails to terminate in a reasonable amount of time (using (run 1 ..)) is (fresh (q) (filter-
singleton q (list 1))) .

(define-relation (ifte cond brA brB)
(disj* (conj cond brA)

(conj (neg cond) brB)))
(define-relation (filter-singleton xs ys)

(disj* (conj* (== xs '()) (== ys '()))
(fresh (x xs2 ys2)
(== xs (cons x xs2))
(ifte (fresh (y) (== (list y) x))

(== ys (cons x ys2))
(== ys ys2))

(filter-singleton xs2 ys2))))

> (run 1 (q) (filter-singleton q (list 1)))
... ; fails to terminate within 3 minutes

6.2 Universal�antifier and Implication
Table 3 shows additional queries that use universal quanti�ers and type constraints. Some of these examples

have appeared as examples in previous sections. Notice that the �nal example is slower than the other examples,

because of the presence of a disjunction.

Universal �antification and Implication in miniKanren 2:15

Table 3. Basic Universal �antifier Tests. We use Greek le�ers U, V, . . . to represent query variables, and
always query for 1 answer.

Query Result Time (ms)

∀I.∃G .∃~.((I,~) = G) ((() .(>))) 0

∀E .((E = 1) ∨ ((E ≠ 1) ∨ (E = 2))) ((() .(>))) 3

∃0.∃1.∀E .((E = 0) ∨ (E ≠ 1)) ((() .(>))) 4

∃0.∃1.∀E .(((E = 0) ∧ (E ≠ 1)) ∧ (E ≠ E)) () 0

((U ∈ ’(string?)) ∧ ∀I.((U ∈
’(symbol? pair? number?)) ∨ ((U = #C) ∨ ((U = #5) ∨ (U =′

())))))

() 0

∀E .((E = 1) ∨ ((E ≠ 1) ∨ (E = 2))) ((() .(>))) 3

∀I.((I = U) ∨ (I ≠ V)) (((_.0_.0).(>))) 11

∀G .∀~.(((~ ≠ (0,1)) ∨ (G ≠ ~)) ∨ (~ = U)) ((((0.1)).(>))) 497

Table 4. Basic Implication Tests. We use Greek le�ers U, V, . . . to represent query variables, and always query
for 1 answer.

Query Result Time (ms)

((U = 1) → (U = V)) (((_.0_.1).(′_.0 ≠ 1))) 0

∀0.∀1.(((1 = 0) ∧ (0 ∈ ’(symbol?))) → (1 ≠ 1)) ((() .(>))) 324

∀0.((0 = 1) → (0 ∈ ’(symbol?))) () 1

∀G .∀I.(((G = I) ∧ (False z)) → (False x)) ((() .(>))) 3

∀G .∀~.(((~ = (0,1)) ∧ (G = ~)) → (~ = U)) ((((0.1)) .(>))) 9212

(∃G .((Loop0) ∨ (G ≠ G)) → (Loop0)) ((().(>))) 2

((((((((Loop1) → (Loop2)) ∧ ((Loop2) →
(Loop3))) ∧ ((Loop3) → (Loop4))) ∧ ((Loop7) →
(Loop4))) ∧ ((Loop4) → (Loop5))) ∧ ((Loop6) →
(Loop5))) → ((Loop1) → (Loop5)))

((().(>))) 3209

((∀G .((Loop x) → (Loop8)) ∧ ∃:.(Loop k)) →
(Loop8))

((().(>))) 448

∀G .((loop x) ∨ (neg (loop x))) We expect that it won’t termi-

nate.

>3min

(neg (∃G .(neg ((loop x) ∨ (neg (loop x)))))) ((() .(>))) 27

((neg (winning a)) → (winning b)) ((() .(>))) 51

(((winning d) → (⊥)) → (⊥)) () 3

((winning c) → (⊥)) () 19

Table 4 shows the additional queries that use implication. The �rst few test cases use primitive constraints in

their assumptions to test semantic solving. Some of the later tests use user-de�ned non-terminating relations

Loop0 , Loop1 , and others.

The 5th example (∀G .∀~.(((~ = (0, 1)) ∧ (G = ~)) → (~ = U))) is particularly interesting. After negating

the antecedent, this example becomes equivalent to the �nal query in Table 3. However, this query takes

much longer than the previous, because of the preprocessing (splitting of the negatable and non-negatable

components, more fruitless branches to search through) we need to do after each relative complement.

Moiseenko [7] expresses universal quanti�cation using negation and existential quanti�cation, but this en-

coding does not preservemeaning in intuitionistic logic.We provide two examples involving the law of excluded

middle (LEM) to demonstrate the di�erence in behavior: direct LEM (∀G .((loop x)∨(neg (loop x)))), and
the encoded LEM, (=46(∃G .(=46((loop x) ∨ (neg (loop x)))))). The LEM is not an axiom of intuitionistic

logic and should not be derivable. This explains why the direct LEM query does not produce an answer

2:16 Jin et al.

(Table 4 row 9); in fact it does not terminate. However the encoded LEM is derivable in intuitionistic logic,

and the encoded LEM query produces an answer (Table 4 row 10). These results are expected given the

constructiveness of our system.

The �nal two examples are extensions of the game-winning examples from Moiseenko [7]. If we assume a
is a losing position, then we can conclude that b is also a winning position. However, even though we know

c is actually a winning position, our implementation cannot refute (winning c) → ⊥ easily. The reason is

that the test case solely depends on the analysis of the antecedent, which our implementation analyzes slowly

by unfolding, pattern matching and extracting the negatable part of the antecedent. Our implementation

analyzes the consequent much faster.

6.3 Evalo Tests
In this section, we use our implementation of universal quanti�cation and implication to reason about a

relational interpreter. We use the relational interpreter from Rosenblatt et al. [8].

First, we reason about synthesizing the identity and constant functions. Both functions have consistent

behaviour for all inputs. These particular queries are also representable using Eigen
5
and _Kanren [4].

> (run 1 (x z) (forall (y) () (evalo `(app ,x (quote ,y)) z)))
'((('(closure '_.0 _.1) _.0) . (\top)))
; cpu time: 57 real time: 57 gc time: 1
> (run 1 (x) (forall (y) () (evalo `(app ,x (quote ,y)) y)))
'((('(closure (var ()) _.0)) . (\top)))
; cpu time: 285 real time: 285 gc time: 33

Next, we test the syntactic solving ability by assuming a non-terminating expression omega is actually an

identity function. This query succeeds, but slowly.

;; We use de Bruijn indexing to express (_G .G G) (_G.G G)
> (define omega '(app (lambda (app (var ()) (var ())))

(lambda (app (var ()) (var ()))))
;; The identity function
> (define idf '(lambda (var ())))
> (run 4 (x) (implies (evalo omega idf)

(evalo `(app ,omega ,omega) x)))
'((((closure (var ()) ())) . (\top))

(((closure (var ()) ())) . (\top))
(((closure (var ()) ())) . (\top))
(((closure (var ()) ())) . (\top)))

; cpu time: 15903 real time: 15907 gc time: 1506

Note that this query can only be solved via syntactical pattern matching: the program does not terminate,

so unfolding evalo is fruitless. Thus, the only terminating approach is to use the false assumption that

omega evaluates to the identity (_G.G).
Finally, we present a similar example that uses omega, where the antecedent needs to be unfolded to

succeed. However, this query does not succeed in a reasonable time. This example illustrates the asymmetry

in how our system treats (consequent) goals and the list of assumptions. Unlike (consequent) goals, which

are only unfolded by the semantic solver, assumptions are both unfolded and processed syntactically, but in

interleaving search branches that compete for resources.

> (run 1 (z) (implies (evalo `(cons ,omega '6) (cons idf 6))
(evalo omega z)))

; Takes > 3 mins

These examples show why the syntactic matching component is important: it is not su�cient to express

implication using negation as in Moiseenko [7] if we wish to reason about potentially non-terminating

programs.

5
http://github.com/webyrd/miniKanren-with-symbolic-constraints

Universal �antification and Implication in miniKanren 2:17

Table 5. Tests on min and sort-boolo . We use Greek le�ers U, V, . . . to represent query variables, and
always query for 1 answer.

Query Result Time (ms)

(min (list ’s) (list)) → (min-result U) (((() .(>)))) 2

(min (list ’s ’s) (list ’s)) → (min-result U) (((’s).(>))) 28146

∀G .(sort-boolo (list x #f) (list #f x)) ((() .(>))) 1

((sort-boolo (list U #f) (list #f U) →⊥)) We don’t know if this will ter-

minate.

>3min

∀G .(sort-boolo (list x #f) (list x #f)) () 2

(∀G .(sort-boolo (list x #f) (list x #f)) → (⊥)) ((() .(>))) 5167

∀G .(sort-boolo (list #f x #f) (list #f #f x)) ((() .(>))) 18

((sort-boolo (list #f U #f) (list #f #f U)) →
⊥)

We don’t know if this will ter-

minate.

>3min

∀G .(sort-boolo (list x #f #f) (list x #f #f)) () 4

(∀G .(sort-boolo (list x #f #f) (list x #f #f)) →
(⊥))

((() .(>))) 35113

((sort-boolo (list U #f) (list U #f)) →⊥) We don’t know if this will ter-

minate.

>3min

6.4 List and Sorting
As a step towards synthesizing provably correct sorting procedures, we test our ability to reason about a

sorting relation. With the help of universal quanti�cation and implication, we can prove some of the properties

in Table 5.

;;; sort the #f into the end, using inserto
(define-relation (inserto x ys xs)

(conde ((== ys '()) (== xs (list x)))
((fresh (y rst rst-inserted)

(== ys (cons y rst))
(conde ((=/= y #f) (== xs (cons x ys)))

((== y #f)
(== xs (cons y rst-inserted))
(inserto x rst rst-inserted)))))))

(define-relation (sort-boolo xs ys)
(conde ((== xs '()) (== ys '()))

((fresh (x rst rst-sorted)
(== xs (cons x rst))
(sort-boolo rst rst-sorted)
(inserto x rst-sorted ys)))))

We start with examples that only sort lists of two or three elements. Queries using only a universal quanti�er

run quickly. However, if we use implication to express the same logical meaning, the equivalent queries take

signi�cantly longer to run. This performance degradation further demonstrates the asymmetry between

processing the assumptions and the (consequent) goal.

Then we try to refute the possibility that (sort-boolo (list x .. #f) (list x .. #f)) . There is
a huge time di�erence when we change the list length. What’s more, when we are really curious about the

counterexample, this negation encoding will still take a very long time. These two groups of examples show

the performance de�ciency of the current implementation of syntactic solving.

2:18 Jin et al.

6.5 Using Implication to Compute
To demonstrate the expressiveness of constructive implication, we look at an example that uses implication to

carry out a computation inspired by Hallnäs and Schroeder-Heister [3]:

;;; find the minimum of two list-encoded Peano numerals
(define-relation (min-result r) (min-result r)) ; intentional non-termination relation
(define-relation (min m n)

(conj* (implies (== n '()) (min-result '()))
(implies (== m '()) (min-result '()))
(forall (m-- n-- r) ()

(implies (conj*
(== m (cons 's m--))
(== n (cons 's n--))
(implies (min m-- n--) (min-result r)))

(min-result (cons 's r))))))

Note here min-result is encoded as a non-terminating relation. Since min-result trivially loops, we

can think of it as a placeholder for a result. The actual result will be provided by syntactic solving.

The tests related to min are included in Table 5. Despite the use of non-terminating relations, we obtain

results for both min(1, 0) and min(2, 1). However, it takes signi�cantly longer to compute min(2, 1), again
due to the asymmetic processing of assumptions described in Section 6.3 and evidenced in Section 6.4.

6.6 Illustrating Constructiveness using the Halting Problem
This next example illustrates another reason to prefer a constructive system, which is to avoid lying to

ourselves: we should not be able to solve the halting problem.

Recall in Table 4, we have two examples involving the law of excluded middle (LEM). Here, we replace

loop with a familiar undecidable relation halto , which states that a program will terminate:

> (define-relation (halto expr) (fresh (result) (evalo expr result)))
> (run 1 () (forall (expr) ()

(disj (neg (halto expr)) (halto expr))))
;; The above query will not terminate

> (run 1 () (neg (fresh (expr)
(neg (disj (neg (halto expr))

(halto expr))))))
'((() . (\top)))

Recall that the direct LEM is not provable in intuitionistic logic, so the direct LEM query will not terminate.

The encoded LEM query will eventually terminate, but is incredibly slow. This might be surprising since the

original encoded LEM query in terms of loop was quite fast. The main reason replacing loop with halto
leads to such poor performance is that the unfolding of halto and evalo causes the system to spend more

time on fruitless interleaved semantic solving computation before it can �nd the solution using syntactic

solving.

7 LIMITATIONS
There are several limitations in our current implementation of universal quanti�cation and implication.

• Performance Since we emphasize expressiveness over performance, many queries involving universal

quanti�cation and implication are slow. Moreover, many interesting queries that involve inductive rea-

soning will fail. We demonstrate in our results the the asymmetry of the performance when processing

the assumptions and (consequent) goals.

• Duplicate Solutions It is possible for the same result to be returned many times, even for simple goals

like (forall (v) (disj (== v a) (=/= v a))) . Although these repeated results are currently

unhelpful, they correspond to alternative ways to construct a proof. We would like the system to

eventually produce these proofs.

Universal �antification and Implication in miniKanren 2:19

• Search is IncompleteWe demonstrate examples where queries do not return a result. Most of these

are probably due to performance. However, we conjecture that search is not complete because we don’t

currently unfold conjuncts fairly in consequent goals.

• Soundness is not yet proven We conjecture that the approach is sound, but soundness has not been

proven.

8 CONCLUSION AND FUTUREWORK
We present constructive universal quanti�cation and implication in miniKanren. The current implementation is

slow, but we are able to successfully run some interesting queries, including strati�ed examples, to demonstrate

the expressive of the approach.

Since the current approach is fairly complex, we are interested in making it possible to check the correctness

of the answers. One approach to do so is via proof generation, or tracking the steps that the search takes to

�nd an answer. Such proofs can be externally checked and veri�ed. It will also be possible to extract programs

from the proof terms as is done in the dependently typed programming setting.

Our goal is to eventually be able to synthesize provably correct programs from universal properties: for

example being able to synthesize a sorting procedure from speci�cation (hence our interest in the examples in

Sections 6.3 and 6.5). Such an ability will not only help programmers more easily write code, but also produce

an independently checkable proof of correctness.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for the helpful comments, and Leon Yao and Ina Jacobson for reading and

reviewing the early draft.

Research reported in this publication was supported by the National Center For Advancing Translational

Sciences of the National Institutes of Health under Award Number OT2TR003435. The content is solely the

responsibility of the authors and does not necessarily represent the o�cial views of the National Institutes of

Health.

REFERENCES
[1] Krzysztof R Apt and Maarten H Van Emden. 1982. Contributions to the theory of logic programming. Journal of the

ACM (JACM) 29, 3 (1982), 841–862.
[2] Lars Hallnäs and Peter Schroeder-Heister. 1990. A proof-theoretic approach to logic programming. I. Clauses as rules.

Journal of Logic and Computation 1, 2 (1990), 261–283.

[3] Lars Hallnäs and Peter Schroeder-Heister. 1991. A proof-theoretic approach to logic programming: II. programs as

de�nitions. Journal of Logic and Computation 1, 5 (1991), 635–660.

[4] Weixi Ma, Kuang-Chen Lu, and Daniel P. Friedman. 2020. Higher-order Logic Programming with _Kanren. (2020).

[5] Marco Maggesi and Massimo Nocentini. 2020. Kanren Light: A Dynamically Semi-Certi�ed Interactive Logic Program-

ming System. arXiv preprint arXiv:2007.04691 (2020).
[6] Dale Miller and Gopalan Nadathur. 2012. Programming with higher-order logic. Cambridge University Press.

[7] Evgenii Moiseenko. 2019. Constructive negation for minikanren. In the �rst miniKanren and Relational Programming
Workshop. 58.

[8] Gregory Rosenblatt, Lisa Zhang, William E Byrd, and Matthew Might. 2019. First-order miniKanren representation:

Great for tooling and search. In the �rst and Relational Programming Workshop. 16.
[9] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. 1991. The well-founded semantics for general logic programs.

Journal of the ACM (JACM) 38, 3 (1991), 619–649.

2:20 Jin et al.

A APPENDIX
A.1 Proof of the main algorithm of handling Universal�antifier
We use variable assignment to specify the semantic of a given state. Doing so, we can also specify the semantic

of a given miniKanren Goal, which is (computationally) the stream of states satisfying the goal. We will model

each state as a collection of variable assignments, and thus the semantic of a given goal is just a collection of

variable assignments. This is helpful to prove the correctness of our algorithm.

De�nition A.1 (Variable Assignment, Semantic of miniKanren Goal). A variable assignment q is a special

substitution such that maps variable to literal values in L.

We will inherit the extending notation: q [v ↦→ 0] behaves exactly like q except v will be substituted by 0.

Given a goal g , we will denote ÈgÉ = {q : q (g) = >} to model its semantic, and q is a partial function

from the free variables of g to L.

Relative complements can only be de�ned via semantic aspect. Because only in this case, the speci�cation

is clear. We will �rst prove the correctness of the algorithm to show that this semantic de�nition is exactly

what we want.

De�nition A.2 ((Semantic) Relative Complement). For a given goal g with variable v inside,

the semantic relative complement of g with respect to v is exactly the set of variable assignment

{q [v ↦→ =] : q [v ↦→ =] ∉ È6É, q ∈ È(exists v g)É}

Looking closely, this is exactly De�nition 3.2. The complement corresponds to the coverage and dis-

jointness. The external consistency is ensured implicitly because the external variable are free variables inside

(exists v g) .

Proposition A.1 (Correctness of the Algorithm). .

For a family of goals BC8 ∈ G s.t.

⋃
8 ÈBC8É = È(domain ∧ g)É,

Èforall v domain gÉ = Èforall v > (neg domain)É

∪
⋃
8

È (exists v BC8) ∧ (forall v (domain ∧ '�8) g) É

where each '�8 is only semantic de�ned, and È'�8É is the semantic relative complement of BC8 with respect

to E ,

in other words, È'�8É = {q [v ↦→ =] : q [v ↦→ =] ∉ ÈBC8É, q ∈ È(exist v BC8)É}
This is proved by simply expanding de�nitions on both sides.

Looking closely, this is exactly how the main algorithm in Section 3 act – the family of BC8 is the stream

of states (and transformed into goals) of candidate extraction; the (forall v > (neg domain)) corresponds

the relative negation. As long as we have the completeness of solving existential goals, we can ensure the

correctness of the algorithm, (of course inside classical logic, without recursive relation and constructive

implication).

Now we need to �gure out how to syntactically compute the (semantic) relative complement.

A.2 Correctness of Relative Complements in Algorithm 3.1
Before setting up the correspondence between the algorithmic (syntactical) relative complement and the

semantic one, we recall some convention setup.

Convention A.1. We stick to the setup convention ...

C1.A Recall using L to denote the collection of literal value miniKanren/Lisp can take inductively de�ned as

a collection of numbers, booleans, strings, symbols, pair of literal values.

C1.B We initially use substitution to indicate variable assignment. Now we use a tuple L=
to indicate the

variable assignment. The order of the tuple is according to the scoping order of a given goal.

C1.C L+
:=

⋃
=∈N>0 L=

to denote L=
for all sorts of =, especially when we don’t want to bother with the

number of variables

Universal �antification and Implication in miniKanren 2:21

C1.D We can consider G as recursively de�ned by the following:

we only have the (projected) variables and constants from L as terms C ,

and we only have following as atomic goals/propositions: C1 = C2, C1 ≠ C2, C1 ∈) for some (union of)

types in)

we only have conjunction, disjunction, existential quanti�er as connectives.

C1.E Note that, each type) must be denoting an in�nite set, thus we won’t have 1>>; as type.

This is simply avoiding the potential problem of uni�cation like G ∈ �>>; ∧ G ≠ #t ∧ G ≠ #f.
C1.F È(·)É : G → P(L+) to denotes the collection of value the variable inside (·) can take, and we don’t

want to specify how many variables are assigned here, so we let codomain be L+
.

We will also use È(·)É to denote the mathematical correspondence of the other components we are

reasoning, such as states.

C1.G We conventionally use E1, .., E=, G to denote the variables appearing inside a goal/proposition % , and

E1, .., E= are the extenal logical variable (mentioned in De�nition 3.2). The G is the one being "focused",

"dealt with" (in the current context, domain �lter or relatively complemented with) (corresponding the E
in De�nition 3.2).
Then we use È%É0B/EB to indicate the evaluation of goal/propositional % (either evaluated into Top
or Bottom) when substituting those variables E1, .., E=, G with literal values 01, ..0=, D ∈ L
By this convention, we usually think of È(·)É denoting = + 1 values, as we stick with the convention

taking = + 1 variables (even though the above de�nition is the formal one).

C1.H Even though relative complement is an operation on miniKanren states, we will consider their "propo-

sitional correspondents" – by easily translating a state into a proposition (with disjunction and con-

junctions inside)

Convention A.2. .

C2.A (Choice Function): For a given % ∈ G, since we have È%É = {(G1, G2, .., G=, G) : %}, (where we use

conventional set notation to denote the set of value), we can de�ne choice function 5 G
%
w.r.t the given

(miniKanren) variable G (in %) and the given goal (proposition) % :

5 G% : L= → P(L)
5 G% (01, 02, .., 0=) = {D : (01, 02, .., 0=, D) ∈ È%É}

Intuitively, this choice function will return a set of all the possible value miniKanren variable G can

take, when other variables inside % are �xed by 08 ’s.

We might omit the superscript G if doing so is non-ambiguous.

C2.B (2F=?
to denote the complement of (when (is non-empty; otherwise (2F=? = ∅

C2.C We use (·)∌E to indicate a goal/proposition (·) ∈ G doesn’t have appearances of G inside.

C2.D We use (·)3E to indicate a goal/proposition (·) ∈ G that has G in each atomic sub-proposition inside.

C2.E We use CG ⊂ G to denote all the goals/propositions that use conjunctions as the only connective (as
De�nition 3.4)
Thus for CG , we can consider each element is inductively constructed as CG 3 � = �

∌E
1

∧� 3E
2

, which

themselves can be considered as inductively constructed.

C2.F (Field Projection Form) For atomic propositions, we will introduce car, cdr operators applying on

variables. Notationally, (car x) , (cdr x) will be replaced by �eld projection form: x.car ,

x.cdr . (as De�nition 3.5)
Since this introduces non-canonical form as we know (cons x.car x.cdr) = x (we have two syntac-

tically di�erent term with same semantic, very troubling), we will instead excluding cons operators

from G. Everything reasoning about pairs will be transformed into �eld projection form.

The obvious advantage is that, for each variable, includingprojected variable (in the form of v.p.a.t.h
), we can easily decide, by inspecting the projected variable, if it is a term related to the original queried

variables; the disadvantage is that it complicates the implementation.

Now we can formalize the semantic of relative complements and domain �lter, using this new notation.

Looking closely, we can see this version of the de�nition actually coincides with the previous one.

2:22 Jin et al.

De�nition A.3 ((Semantic) Relative Complements). We use "{..}G " to denote relative complements w.r.t. G .

Thus formally speaking, for arbitrary � ∈ G,

{(01, .., 0=, D) : È�É0B/EB }G = {(01, .., 0=, D ′) : D ′ ∈ 5 G� (01, .., 0=)2F=? }

De�nition A.4 ((Semantic) Domain Filter). We use

���G denotes domain �lter away the appearances of G . Thus

formally speaking, for arbitrary � ∈ G,

{(01, .., 0=, D) : È�É0B/EB }
���G = {(01, .., 0=) : ∃D, È�É0B/EB }

Domain �lter is absent from the main paragraph of the paper because we wrap this concept inside the

relative complement. This is a technical detail, useful when, for example, removing the presence of a given

variable (when (forall (v) ...) returns, we don’t want the state to have any information of v). It is an

involved concept in the implementation.

Now we postulate some assumptions/properties/axioms. We name these as "properties/axioms" because

of the considerations of extensibility – to support more atomic constraints, if the following properties are

satis�ed, then the later proof doesn’t need to change as all the proofs are based on the following "axioms".

Proposition A.2 (Some Basic Properties/Axioms to follow when designing (atomic propositions of) G). .

P1.A 56 and È(·)É respects (distributes) ∧,∨
i.e. 561∧62 (·) = 561 (·) ∩ 562 (·), ...

P1.B we have a function DomainEnforceG (·) : G3E → G3E
s.t.

(a) DomainEnforceG (� ∧ �) ⇐⇒ DomainEnforceG (�) ∧ DomainEnforceG (�)
(b) if 5DomainEnforceG (63E) (01, .., 0=) ≠ ∅,

then 5DomainEnforceG (63E) (01, .., 0=)2 = 5
DomainEnforceG (63E) (01, .., 0=) for atomic proposition 63E

P1.C (Non-Empty Precondition)

We have a function DomainEnforce : G3E → G∌E
s.t.

(a) ∀{08 }, (01, .., 0=) ∈ ÈDomainEnforce(� 3E)É =⇒ 5�3E (01, .., 0=) ≠ ∅
(Note, � 3E

has to be satis�able)

(b) For � = �∌E ∧� 3E
, ÈDomainEnforce(� 3E)É ⊇ È� 3EÉ ⊇ È�É

P1.D 56∌E (01, .., 0=) = L or 56∌E (01, .., 0=) = ∅
P1.E {(01, .., 0=, D) : È�É0B/EB }

���G = {(01, .., 0=) : 5� (01, .., 0=) ≠ ∅}

Here DomainEnforce, DomainEnforceG are just the extensional/axiomatic view of making pairo ex-
plicit mentioned in Algorithm 3.1. In other words, computationally, these two functions will just make sure

pairo constraints are explicit.

Remark A.1 (Intuition about DomainEnforce, DomainEnforceG). .

The de�nition of DomainEnforceG inside Item P1.Bb comes from the naive expectation 56 (·) = 56 (·)2 – i.e.

we can lift the negation of formula onto the set-level. However, it requires the second thought on the negation

operation (·): for example, intuitively speaking we will design the negation as x.car = 1 ≡ x.car ≠ 1 .

However, this doesn’t coincide with the intuition of the semantic complement – if car x = 1 doesn’t hold, it

could also be the case that x is not even a pair in the �rst place.

The reason this happens is that, projection (car and cdr), when applies to variable, actually has some

precondition on the variable to begin with. That’s the job of DomainEnforceG – making sure this precondition

is explicit. We will ensure when taking (syntactic) negation, we will start with DomainEnforceG (x.car = 1) ≡
(x.car = 1 ∧ x ∈ Pair). Then naive syntactic complement will also consider the case where x is not

even a pair.

The same story happens for DomainEnforce, as we don’t want choice function to �x the value of other

variables non-sensically. For example, when we have a goal/proposition like x = a.1 it is not reasonable to
let 0 be a number. Thus DomainEnforce applying to this goal/proposition will lead to an explicit ”a ∈ Pair”.
What’s more, DomainEnforce never impose "new" information, that is the reason we can have Item P1.Cb.

Universal �antification and Implication in miniKanren 2:23

Thus DomainEnforce, DomainEnforceG are just functions that responsible for excluding the "invalid" sen-

tence (sentence with no proper domain speci�ed and thus ambiguous). Their di�erence is that DomainEnforceG

handles the type constraint of G , while DomainEnforce handles the type constraints of the remaining variables.

Proposition A.3 (Lemma only relies on the postulated properties/axioms). Most of the following are just

proved by induction on the structure of CG and their components. (Note that, each following �,�1,�2, .., no

matter (·)∌E or (·)3E all belong to CG).

L3.A 5�∌E (01, .., 0=) = L or ∅
L3.B if 5DomainEnforceG (�3E) (01, .., 0=) ≠ ∅,

then 5DomainEnforceG (�3E) (01, .., 0=)2 = 5
DomainEnforceG (�3E) (01, .., 0=)

L3.C if the logical statement "�
∌E
1

→ DomainEnforce(� 3E
2

)" is valid, then
L3.C.A 5

�∌E
1

(01, .., 0=) ≠ ∅ =⇒ 5�3E
2

(01, .., 0=) ≠ ∅
L3.C.B 5

�∌E
1

(01, .., 0=) ≠ ∅ ⇐⇒ 5
�∌E
1
∧�3E

2

(01, .., 0=) ≠ ∅

Proof. .

Item L3.A is proved by induction on �∌E
, with the help of Item P1.A and Item P1.D.

Item L3.B is proved by induction on � 3E
with the help of Item P1.Ba and Item P1.Bb.

To prove Item L3.C.A, we know 5
�∌E
1

(01, .., 0=) ≠ ∅ means there exists D,such that È�1É0B/EB =)$% . Since

the logical statement "�
∌E
1

→ DomainEnforce(� 3E
2

)" is valid, we know
ÈDomainEnforce(� 3E

2
)É0B/EB =)$% . What’s more, D and G are absent from DomainEnforce(� 3E

2
). Thus that

means (01, 02, .., 0=) ∈ ÈDomainEnforce(� 3E
2

)É, by Item P1.C, we know 5�3E
2

(01, .., 0=) ≠ ∅.
Item L3.C.B is proved by Item L3.C.A and Item L3.A and Item P1.A.

�

Proposition A.4 ((Syntactic) Relative Complement). For arbitrary �
∌E
1

and � 3E
2

∈ CG where we assume

(1) �
∌E
1

∧� 3E
2

satis�able,

(2) "�
∌E
1

→ DomainEnforce(� 3E
2

)" is valid
(3) "� 3E

2
⇐⇒ DomainEnforceG (� 3E

2
)" is valid

then we have

{(01, .., 0=, D) : È�∌E
1

∧� 3E
2

É0B/EB }G = {(01, .., 0=, D) : È�∌E
1

∧� 3E
2

É0B/EB }

Proof. By de�nition, we only need to verify the second equality of the following

{(01, .., 0=, D) : È�∌E
1

∧� 3E
2

É0B/EB }G = {(01, .., 0=, D) : D ∈ (5
�∌E
1
∧�3E

2

(01, .., 0=))2F=? }

=? {(01, .., 0=, G) : È�∌E
1

∧� 3E
2

É0B/EB }

Thus it is su�cient to prove in this context,

for arbitrary 01, .., 0=, D ∈ L,

D ∈ (5
�∌E
1
∧�3E

2

(01, .., 0=))2F=? ⇐⇒ È�∌E
1

∧� 3E
2

É0B/EB

When (5
�∌E
1
∧�3E

2

(01, .., 0=)) = ∅,
and due to Item L3.A:

If 5
�∌E
1

(01, .., 0=) = L, then 5�3E
2

(01, .., 0=) = ∅, but it contradicts Item L3.C.A.

If 5
�∌E
1

(01, .., 0=) = ∅, then

D ∈ ∅ ⇐⇒ �0;B4 ⇐⇒ †È�∌E
1
É0B/EB ⇐⇒ È�∌E

1
∧� 3E

2
É0B/EB

The † can be proved by expanding the de�nition.

When (5
�∌E
1
∧�3E

2

(01, .., 0=)) ≠ ∅,

2:24 Jin et al.

Then (5
�∌E
1

(01, .., 0=)) = L, and then

D ∈ (5
�∌E
1
∧�3E

2

(01, .., 0=))2F=? ⇐⇒ D ∈ (5�3E
2

(01, .., 0=))2

⇐⇒ D ∈ (5
�3E
2

(01, .., 0=)) by �C4< !3.�

⇐⇒ È� 3E
2

É0B/EB by de�nition of 5

⇐⇒ È�∌E
1

∧� 3E
2

É0B/EB since È�∌E
1
É0B/EB =)$%

�

This part directly refers to syntactical relative complements in Proposition 3.3 and all the pre-
processing we have done to satisfy the assumption of the proposition.

Proposition A.5 ((Syntactic) Domain Filter). .

If the logical statement "� ′∌E → DomainEnforce(� 3E)" is valid, then

{(01, .., 0=, D) : È� 3E ∧� ′∌EÉ0B/EB }
���G

= {(01, .., 0=, D) : 5�3E∧�′∌E (01, .., 0=) ≠ ∅} By Item P1.E

= {(01, .., 0=) : 5�′∌E (01, .., 0=) ≠ ∅} By Item L3.C.B

= {(01, .., 0=) : ∃D, (01, .., 0=, D) ∈ È� ′∌EÉ} By de�nition of 5 G
�′∌E

= {(01, .., 0=) : ∃D, È� ′∌EÉ0B/EB } By de�nition of È(·)É0B/EB
= {(01, .., 0=) : È� ′∌EÉ0B/EB } G and D are not appearing

This syntactical domain �lter justi�ed why in the relative complement algorithm we can simply remove

the unmentioned variable directly. The preprocessing directly refer to the precondition of this proposition.

This proposition also justi�es why the inner existential quanti�ers of a universal quanti�er can be directly

ignored after proper processing (including explicit pairo and �eld projection form). The main reason roots in

the item P1.C.

Proposition A.6 (Unsatis�ability Checking). .

If the logical statement "� ′∌E → DomainEnforce(� 3E)" is valid,
take 01, .., 0= as arbitrary,

where we denote � = � 3E ∧� ′∌E
, and there are E1, .., E=, E as logical variables,

and È� 3E ∧� ′∌EÉ®0/®E as the resulting goal of substituting E1, .., E= by 01, .., 0= .

then

È� 3E ∧� ′∌EÉ®0/®E is unsatis�able ⇐⇒ 5�3E∧�′∌E (01, .., 0=) = ∅ By Item P1.E

⇐⇒ 5�′∌E (01, .., 0=) = ∅ By Item L3.C.B

⇐⇒ È� ′∌EÉ®0/®E = �$))$"

⇐⇒ È� ′∌EÉ®0/®E =)$%

This part directly refers to how relative negation is computed in Proposition 3.6.
Take the relative complement algorithm as the example. The Algorithm 3.1 directly corresponds to Proposi-

tion A.4.

All we need to prepare is to (1) make sure we are dealing with conjunction-only (by splitting the stream)

just like we are dealing with � = � 3E ∧ �∌E
(as De�nition 3.4) ,(2) sort out the atomic goals/propositions

inside intermediate state/goals, �nd out which belongs CG∌E
and CG 3E

(as Proposition 3.3), and (3) make

�∌E → DomainEnforce(� 3E) valid by dealing with� ∧ DomainEnforce(� 3E) instead. More concretely in our

framework, we are dealing with explicitly mentioning pairo . (This is sound and complete due to Item P1.Cb
and thus � ⇐⇒ � ∧ DomainEnforce(� 3E)).

	Abstract
	1 Introduction
	2 Background
	3 Universal Quantification
	3.1 Base Case
	3.2 Candidate Extraction
	3.3 Relative Complement
	3.4 Domain Relative Negation

	4 Constructive Implication
	4.1 Semantic Solving
	4.2 Syntactic Solving

	5 Related Work
	6 Evaluation
	6.1 Tests from moiseenko2019constructive
	6.2 Universal Quantifier and Implication
	6.3 Evalo Tests
	6.4 List and Sorting
	6.5 Using Implication to Compute
	6.6 Illustrating Constructiveness using the Halting Problem

	7 Limitations
	8 Conclusion and Future Work
	References
	A Appendix
	A.1 Proof of the main algorithm of handling Universal Quantifier
	A.2 Correctness of Relative Complements in algo:relcomp

