CSC338 Exam Jam!

CSC338 Exam Jam Format:

- Choose your teams of 4-5
- Take an answer tracking sheet
- Try to get as many points as you can

For each question...

- Discuss with your team members
- Write down your final answer in pen on the answer sheet before the countdown
- Keep track of your team points

True or false

- 10 questions
- ▶ 30 seconds each per question
- 1 points per question
- Write "true" or "false" on the answer sheet before the 30 seconds are up

A mathematical problem is ill-conditioned if its solution is highly-sensitive to small changes in the problem (for example, changes to coefficients or values)

A mathematical problem is ill-conditioned if its solution is highly-sensitive to small changes in the problem (for example, changes to coefficients or values)

Answer: True

The condition number for the problem of evaluating a function f(x) is always greater than or equal to 1.

The condition number for the problem of evaluating a function f(x) is always greater than or equal to 1.

Answer: False

When Newton's method converges, it always converges more quickly than the bisection method.

When Newton's method converges, it always converges more quickly than the bisection method.

Answer: False

If x is any n-vector then $||x||_{\infty} \ge ||x||_2$.

If x is any n-vector then $||x||_{\infty} \ge ||x||_2$. Answer: False

In the IEEE double-precision floating-point number system, the underflow level (i.e., UFL in your textbook) is the smallest positive floating-point number.

In the IEEE double-precision floating-point number system, the underflow level (i.e., UFL in your textbook) is the smallest positive floating-point number.

Answer: True

If $|f(\hat{x})|$ is small, then \hat{x} must be close to a root of f(x). That is, \hat{x} must be close to some x that satisfies f(x) = 0.

If $|f(\hat{x})|$ is small, then \hat{x} must be close to a root of f(x). That is, \hat{x} must be close to some x that satisfies f(x) = 0.

Answer: False

Fitting a straight line to a set of data points is a linear least squares problem, whereas fitting a quadratic polynomial to the data is a nonlinear least squares problem..

Fitting a straight line to a set of data points is a linear least squares problem, whereas fitting a quadratic polynomial to the data is a nonlinear least squares problem..

Answer: False

The conditioning of the problem of solving a set of linear equations Ax = b is independent of the vector b.

The conditioning of the problem of solving a set of linear equations Ax = b is independent of the vector b.

Answer: True

In the gradient descent (steepest descent) algorithm, larger α is usually better.

In the gradient descent (steepest descent) algorithm, larger α is usually better.

Answer: False

The fixed-point iteration of $g(x) = \sqrt{x+1}$ converges.

The fixed-point iteration of $g(x) = \sqrt{x+1}$ converges. Answer: True How many points does your team have?

Question 11 – 2 minutes [2 pts]

Does the function $f(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ have a:

- local maximum
- local minimum
- saddle point
- none of the above

at $x_1 = 0$, $x_2 = 0$?

Question 11 – 2 minutes [2 pts]

Does the function $f(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ have a:

- local maximum
- local minimum
- saddle point
- none of the above

at $x_1 = 0$, $x_2 = 0$?

Answer: local minimum

Hessian matrix is

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

We want to use the bisection method to estimate a root of a function f accurate to 10^{-3} (i.e. $|x_{root} - x_{est}| \le 10^{-3}$).

We start with the initial bracket of [-0.5, 0.5]. How many bisection iterations are required?

We want to use the bisection method to estimate a root of a function f accurate to 10^{-3} (i.e. $|x_{root} - x_{est}| \le 10^{-3}$).

We start with the initial bracket of [-0.5, 0.5]. How many bisection iterations are required?

Answer: 10

- Iteration 0: interval size = 1
- Iteration 1: interval size = ¹/₂
 Iteration k: interval size = ¹/_{2^k}

Question 13 – 3 minutes [3 pts]

Compute the Cholesky factorization of this matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 5 \end{bmatrix}$$

Question 13 – 3 minutes [3 pts]

Compute the Cholesky factorization of this matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 5 \end{bmatrix}$$

Answer:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Question 14 – 2 minutes [2 pts]

What is the Householder Transform that will eliminate all but the first element of $a = [2, 3, -1, 1, 1]^T$? Find the vector v that describes the transform.

What is the Householder Transform that will eliminate all but the first element of $a = [2, 3, -1, 1, 1]^T$? Find the vector v that describes the transform.

Answer: $v = [6, 3, -1, 1, 1]^T$ since ||a|| = 4

Question 15 – 1 minutes [2 pts]

Which of the two mathematically equivalent expressions:

•
$$x^2 - y^2$$

• $(x + y)(x - y)$

can be evaluated more accurately in floating-point arithmetic?

Question 15 – 1 minutes [2 pts]

Which of the two mathematically equivalent expressions:

•
$$x^2 - y^2$$

• $(x + y)(x - y)$

can be evaluated more accurately in floating-point arithmetic?

Answer: (x + y)(x - y)

Question 16 – 1 minutes [1 pts]

Which problem has the **worst** conditioning:

- Finding the minima of $f(x) = x^4 1$
- Evaluating $f(x) = x^4 1$ at the point x = 0

Finding a root of
$$f(x) = x^4 - 1$$

Question 16 – 1 minutes [1 pts]

Which problem has the **worst** conditioning:

- Finding the minima of $f(x) = x^4 1$
- Evaluating $f(x) = x^4 1$ at the point x = 0
- Finding a root of $f(x) = x^4 1$

Answer: Finding the minima of $f(x) = x^4 - 1$