
Assignment 4

Due Date: March 25, 8:59pm

Please see the guidelines at https://www.cs.toronto.edu/~lczhang/338/homework.html

What to Hand In

Please hand in 2 files:

• Python file containing all your code, named csc338_a4.py. If you are using Jupyter Notebook to
complete the work, your notebook can be exported as a .py file (File -> Download As -> Python).
Your code will be auto-graded using Python 3.6, so please make sure that your code runs. There will
be a 20% penalty if you need a remark due to small issues that render your code untestable.

• PDF file named csc338_a4_written.pdf containing your solutions to the written parts of the assign-
ment. Your solutions can be hand-written, but must be legible. Graders may deduct marks for illegible
or poorly presented solutions.

Submit the assignment on MarkUs by 9pm on the due date. See the syllabus for the course policy regarding
late assignments. All assignments must be done individually.

Q1. Interval Bisection [10 pt]

Part (a) [5 pt]

Write a function bisect that returns a list of intervals where the root of the function f(x) lies. Each interval
should be half the size of the previous, and should be obtained using the interval bisection method.

Part (b) [2 pt]

In the bisect function, to obtain the midpoint between a and b, it is best to write

mid = a + (b - a) / 2

rather than

mid = (a + b) / 2

Why is the first computation better than the second? Provide an explanation in your PDF writeup.

Part (c) [3 pt]

Use the interval bisection method to find the root of the function

f(x) = x3 + x2 + x− 4

accurate to 8 significant decimal digits. The root of f(x) is between -1 and 4.

Show your work in your python file, and store the root you find in the variable bisection_root.
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Q2. Fixed-Point Iteration [20 pt]

Part (a) [4 pt]

Write a function fixed_point to find the fixed-point of a function f by repeated application of f. The
function should return a list of values [x, f(x), f(f(x)), ...].

Part (b) [8 pt]

To find a root of the equation

f(x) = x2 − 3x + 2 = 0

we can consider fixed-point problems involving the following different functions :

1. g1(x) = x2+2
3

2. g2(x) =
√

3x− 2
3. g3(x) = 3− 2

x

4. g4(x) = x2−2
2x−3

Analyze the convergence properties of each of the corresponding fixed-point iteration schemes for the root x
= 2 by analyzing g′i(x). Do you expect the fix-point iteration to diverge or converge? What is the rate of
convergence?

This question should be done by hand. Submit your solution in your PDF writeup.

Part (c) [8 pt]

Confirm your analysis in Part (b) by using the fixed_point function to generate the fixed-point iterations.
Verify the convergence of gi, or lack thereof. Choose the starting value of x to be x0 = 3.

Analyze the numerical results (outputs of the fixed_point) function and approximate the observed
convergence rate.

Submit your solution in your PDF writeup.

Q3. Newton’s Method [25 pt]

Part (a) [5 pt]

Write a function newton to find a root of f(x) using Newton’s Method. This Python function should take as
argument both the mathematical function f and its derivative df, and return a list of successively better
estimates of a root of f obtained from applying Newton’s method.

Part (b) [2 pt]

Use your function from part (a) to solve for a root of

f(x) = x2 − 3x + 2 = 0

Start with x0 = 3, and stop when the root is accurate to at least 8 significant decimal digits.

Show your work in your python file, and store the root you find in the variable newton_root.
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Part (c) [6 pt]

Consider the following non-linear equations hi(x) = 0.

1. h1(x) = x3 − 5x2 + 8x− 4
2. h2(x) = xcos(20x)− x
3. h3(x) = e−2x + ex − x− 4

Write out the statement for updating the iterate xk using Newton’s method for solving each of the equations
hi(x) = 0.

Include your solution in your PDF writeup.

Part (d) [3 pt]

Plot each of the three functions, showing the roots of each function (if any). Include your plots in your PDF
writeup.

Part (e) [3 pt]

Use the newton function to try and solve hi(x) = 0, for n = 100 iterations, starting with x = 1.5.

Save the return values of calls to the function newton to the variables newton_h1, newton_h2, newton_h3,

Part (f) [6 pt]

Explain why Newton’s method either does not converge or converges slowly for each of the functions h1, h2
and h3.

Include your explanations in your PDF writeup.

Q4. Secant Method [17 pt]

Part (a) [6 pt]

Write a function secant to find a root of f(x) using the secant method. The function should return a list of
successively better estimates of a root of f obtained from applying the secant method.

Part (b) [3 pt]

Use the secant function to find a root of f(x) = x3 + x2 + x− 4, accurate up to 8 significant decimal digits.

Show your work in your Python file. Save the result in the variable secant_root.

Part (c) [4 pt]

Show that the iterative method

xk+1 = xk−1f(xk)− xkf(xk−1)
f(xk)− f(xk−1)

is mathematically equivalent to the secant method for solving a scalar nonlinear equation f(x) = 0.
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Include your solution in your PDF writeup.

Part (d) [4 pt]

When implemented in finite-precision floating-point arithmetic, what advantages or disadvantages does the
formula given in part (c) have compared with the formula for the secant method given in lecture?

This is the formula given in lecture:

xk+1 = xk − f(xk) xk − xk−1

f(xk)− f(xk−1)

Include your solution in your PDF writeup.

Q5. Conditioning [8 pt]

Consider the problem of finding the roots of the functions f1, . . . f4. What is the condition number of each
problem?

Save the condition numbers in the variables cond_f_1 to cond_f_4. If a root is not provided, you can find it
using any method you wish, including by hand. Your condition numbers should be accurate up to 3 significant
decimal digits.

1. f1(x) = x3 + x2 + x− 4
2. f2(x) = x3 − 5x2 + 8x− 4, at x = 2
3. f3(x) = xcos(20x)− x, at x = 0
4. f4(x) = x2 − 4sin(x), at x = 0

If the condition number is infinite, store a very large number or a non-numerical value, but do not use the
value None, so I know that you attempted the problem.
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