Assignment 2

Due Date: February 4, 8:59pm

Please see the guidelines at https://www.cs.toronto.edu/~lczhang/338/homework.html

What to Hand In

Please hand in 2 files:

- Python File containing all your code, named csc338_a2.py. If you are using Jupyter Notebook to complete the work, your notebook can be exported as a .py file (File -> Download As -> Python). Your code will be auto-graded using Python 3.6, so please make sure that your code runs.
- PDF file named csc338_a2_written.pdf containing your solutions to the written parts of the assignment, which includes Q2(e,f), Q3(c,d), Q4(b), Q5(e), and Q6. Your solution can be hand-written, but must be legible. Graders may deduct marks for illegible or poorly presented solutions.

Submit the assignment on **MarkUs** by 9pm on the due date. See the syllabus for the course policy regarding late assignments. All assignments must be done individually.

Question 1. Diagonal Linear Systems [3 pt]

Write a function solve_diagonal(A, b) that takes a diagonal numpy matrix A of size $n \times n$, and a numpy array b of size n, and returns the solution x to the problem Ax=b.

Hint: You may find the numpy function np.diag helpful.

Question 2. Gauss Elimination [17 pt]

Part (a) [1pt]

Use the code below, which we write in Tutorial 3, to solve the below system. Save your resulting numpy array in the variable $q2_x$

Part (b) [3 pt]

For the values of A and b below, show the updated value of A and b after each elimination step when solving the linear system Ax = b.

Save those values in arrays $q2_A$ and $q2_b$ so that $q2_A[0]$ shows the elimination of the first column below the diagonal, $q2_A[1]$ shows the elimination of the second column below the diagonal, and so on. Similarly, $q2_b[i]$ should show the corresponding value of b the same number of eliminations.

Hint: You can do this question by hand, or write a different version of the gauss_elimination function. You may also find the function np.copy helpful.

Part (c) [6 pt]

Write a helper function partial_pivot that performs partial pivoting on A at column k. Your helper function will be called from the function gauss_elimination_partial_pivot.

Part (d) [3 pt]

Solve the system Ax = b for the values of A and b below using gauss_elimination and then gauss_elimination_partial_pivot.

Save the solution you obtain from gauss_elimination in the variable q2d_nopivot. Save the solution you obtain from gauss_elimination_partial_pivot in the variable q2d_pivot.

Which is the correct answer? Save the correct answer in the variable q2d_correct.

Note: Make sure your code accounts for the fact that both function gauss_elimination_partial_pivot and gauss_elimination modify their parameters.

Part (e) [2 pt]

Why do we obtain different results from the two algorithms? Include your answer in your pdf writeup. Be specific.

Part (f) [2 pt]

Is the matrix A from part (d) well-conditioned or ill-conditioned? Include your answer and justifications in your pdf writeup. Be specific.

Question 3. Matrix and Vector Norms [15 pt]

Part (a) [3 pt]

Consider the following matrices M1, M2, and M3. Compute each of their L_1 , L_2 , and L_{∞} norms. Save the results in the variables below.

For the L_2 norm you may find the function np.linalg.norm helpful. You can compute the L_1 and L_{∞} norms either by hand or write a function.

Part (b) [4 pt]

Show that $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$. Include your solution in your pdf writeup.

Part (c) [4 pt]

Is it true that for a vector, $||v||_1 \leq ||v||_{\infty}$? What about for a matrix: is it true that for a matrix, $||M||_1 \leq ||M||_{\infty}$? Include your solution and justification in your pdf writeup.

Part (d) [4 pt]

Assume x and y are 2-vectors. Is it possible to have $||x||_1 > ||y||_1$ but $||x||_2 < ||y||_2$?

If so, save an example of such vector in the variables $q5_x$ and $q5_y$. Otherwise, set both variables to the Python value None.

Question 4. Condition Numbers [8 pt]

Part (a) [4 pt]

Classify each of the following matrices A1, A2, A3 and A4, as well-conditioned or ill-conditioned.

You should do this question by hand instead of writing a function to compute condition numbers.

Save the classifications in a Python array called **conditioning**. Each item of the array should be either the string "well" or the string "ill".

Part (c) [4 pt]

Suppose that A is well-conditioned. Is A^2 also well-conditioned? Why or why not? Include your answer and justifications in your pdf writeup. Be specific.

Question 5. LU Factorization [27 pt]

Part (a) [5 pt]

Write a function forward_substitution that solves the lower-triangular system Ax = b.

Hint: This function should be very similar to the backward_substitution function.

Part (b) [5 pt]

Write a function elementary_elimination_matrix that returns the elements below the k-th diagonal in the k-th elementary elimination matrix. These values corresponds to the values of $[-m_{k+1}, \ldots, -m_n]$ from your notes.

Since Python indices begin at zero, the first elementary elimination matrix is for k = 0.

Do not perform any pivoting.

You may assume that A[i,j] = 0 for i > j, j < k

Part (c) [10 pt]

Write a function lu_factorize that factors a matrix A into its upper and lower triangular components. Use the function elementary_elimination_matrix as a helper.

Part (d) [3 pt]

Write a function solve_lu that solves a linear system Ax=b by * factoring A = LU (using the lu_factorize function) * solving Ly = b using forward substitution (using the forward_substitution function) * solving Ux = y using backward substitution (using the backward_substitution function)

Part (e) [4 pt]

Prove that the matrix

 $A = [[0 \ 1] \\ [1 \ 0]]$

has no LU facotization. No lower triangular matrix L and upper triangular matrix U such that A = LU. Include your proof in your pdf writeup.

Question 6. Application [10 pt]

Part (a) [5 pt]

Describe an efficient algorithm to compute $d^T B^T A^{-1} B d$

Where:

- A is an invertible $n \times n$ matrix,
- B is an $n \times n$ matrix, and
- d is an $n \times 1$ vectors

Be clear and specific. Include your strategy in your pdf writeup.

Part (b) [5 pt]

Write a function invert_matrix that takes an $n \times n$ matrix A, and computes its inverse by solving n systems of linear equations of the form Ax = b.

You can use any code that you wrote in this assignment. You will be graded for efficiency.

Include your code in **both** your **.py** file **and** your pdf writeup.