Design

Why Design?

TYPICAL IDEAL
RELATIVE COST STAKEHOLDER STAKEHOLDER
TO REPAIR TOUCH-POINTS TOUCH-POINTS

Much easier to fix issues during the design phase.

Software Design

What should the software do?

What are the components of the program?

How will you represent those components?

How will the different components interact with one another?

vV VvYyys.y

How do you communicate the software design clearly?

Unified Modeling Language

Somewhat standard tool for communicating software design.

Use Case Diagram

Describes the different types of users called actors and the actions
that the users can take in a software system.

Game

promotePawn

JoinGame

/ StartGame
\

MovePiece

takePiece

/layer 2

Check

Player 1

EndGame

CheckMate

Use Case Diagram Actions

» Actions are approximately the same level of granularity.

» Each action begins with a verb (e.g. “make move" as opposed
to “piece movement”)

» Each action is specific (e.g. “make move” as opposed to
“change board")

» Actions are written concisely.

Class Diagram
Describe the classes in the software system.

JPanel
MouseAdapter
GameMain) ZF
addMouseListener() $1
-board:Board <— <<inner>>
-currentState:GameState
-currnetPlayer: Seed Tt lAT -
-statusBar:JLabel (e:MouseEvent) :void
+GameMain ()
+initGame () :void
JFrame +updateGame(s:Seed 11 Board 1333 Cell
pe (s
row:int,col:int):void [< | ~cells:Cell[3][3] K>— ~content : Seed
+paintComponent +Board() ~row:int
(g:Graphics): void +init():void ~col:int
+;naingar"gs :String[]) +isDraw() :boolean +Cell(row:int,

! :void +haskWon(s :Seed, row:int)

' row:int,col:int) +clear():void
Allocate a JFrame and set its iPDUIEﬁ‘" i +'|Jair|t(g:Gr'aphics)
ContenPane to GameMain (JPanel). +pa1nt_(g:Gr‘aph1cs)q\ S :void

:void Y b
D

GameState Seed Paint itself (provided the

<<enum>> <<enum>> Graphics context)

What are the different components? How do they interact with each
other?

Visual /Interaction Design: Wireframe

Visual guide that represents the skeletal framework of software.
Describe how to arrange the functional elements, and how users can

interact with them.

= Bk o it = Book aflight s
1. Lo 2 Flpy s Lo, Lssach 2 Fights 3B 4 rayment
8 Your flights
/V;"‘ -;13M\€ Revienw your selection

s N os [——

M T L] s i L oty
+ Amisaroar [AMS] N Fork |4} i e €1.563
Tkl tre Ehirgmbin ol ekreatie o & e Detol e Sopt
o N s Sutoass Cion

13 o FEn dxcecmaven oucss
Amisarcom [AMS] Naw Fork (0] @ns
[reren

ket coo ehironton 60 hursitie o bos el

Save and share
At o i >
Shore N etol >
Folkow e prce of ma 1o H
ok on opon on Bk BghlRor 410
Wo ek uarorree I pece i Wesneisny 3
Noveiar
Tolal price €3,081 e

=

Design Review

Teams often review the design of the software, before writing a
single line of code.

Goal: Sanity check and improve the design of the software.

Your Group Project

Your second deliverable is a design presentation.

Normally, design reviews have a lot more audience interaction than
we can afford.

Software Design Example

The Company of Myself

» http://mypuzzle.org/company-of-myself
> https://www.youtube.com/watch?v=tlORfSn8oYg

How to Design This Game?

v

Functional Requirements:

» What can the player(s) do?

» What are the game mechanics?
Non-Functional Requirements:

» Will the game lag?
Visual/Interface Design:

» How will the game look?
Software Design:

» What classes will we need?

» What is the inheritance structure?

v

v

v

Player Actions

Move left/right

Jump

(Jump at the same time as moving left/right)
Flip a switch

“Restart”

“Make ghost”

vV VvV VvYyVvYVvyy

Ghosts can do the same things except “Restart” and “Make ghost".

Wireframe

Classes

» Something to control the board
Finish level

Restart

Check for barriers

The main “tick” function

vV vy VvVvyy

Classes

» Something to control the board
Finish level

Restart

Check for barriers

The main “tick” function

vV vy VvVvyy

» A superclass for objects on the board (doors, switches, etc)

Classes

» Something to control the board
Finish level

Restart

Check for barriers

The main “tick” function

vV vy VvVvyy

» A superclass for objects on the board (doors, switches, etc)

» Character like players / ghosts that can move

Class Diagram (WIP)

Renderable
position
image
Board barrierType
dimension
Character

content render()
num_resets_remaining image_left

image_right
renderBoard() image_fall
resetLevel() mamentum
makaGhost()
hasBarrier(position, character) moveLt_an(]
finishLewvel() moveﬂlght(]
computeMovements() jump(}

flipSwitch()

computeMovement()

Player Ghost
image_ghost L7
turnintaGhaost() LT

Not perfect, but is a communication tool to help design software.

Class Diagram

There are many decisions to be made about how to structure the
classes!

A class diagram provides an overall picture of the software design.

A class diagram does not answer all important design questions.

Data Representation

v

How will you represent the board?

How will you represent the walls and floors?
» What about walls and floors with complex shapes?

At what point will a character run into the wall?
What order will you render things?

v

vV Yy

Computing Movement

At every “tick”, we compute the character movements:

Are there any key presses?
Is the level complete?

Do the ghosts move?
Does the player move?

vV vyYyyewy

Other questions we have to answer:

» How do we store the player movement?
» Can characters move at the same time as flipping a switch?

Ordering

v

Check if the level is complete (player or a ghost is at the door)
Check for any key presses
Check for “reset” (make ghost)

» Create a new ghost

» Reset tick counter and ghosts to an initial state
Check if user wants to restart the level
Check if a character is flipping a switch
Move each character (what order?)

> Is there momentum from a previous jump?
What if a character hits the ceiling?
Is there a new jump? Can a player jump?
Move left or right?
Save the key press

vy

v vy

vV vy

v

Saving Player Movement

Should the Player class track movement, or the Board class?

Do we save the key presses or the pixel-wise movement at each
tick?

These are hard design decisions that can have ramifications on what
kind of levels we can design.

Communication and Critical Thinking

» Making these design decisions is often an open-ended problem
requiring critical thinking.

» Determining the best decision requires clearly explaining the
advantages and disadvantages that you notice.

> Getting everyone on the same page can be difficult, and
requires interpersonal communication skills.

» Catching issues during the design phase is much better than
catching them later on!

Splitting the Work

What are the major pieces?

» Board

» Rendering

» Check if there is a barrier

» Make ghost

> Restart
» Character

» Moving left and right

» Jumping (momentum)

» Falling (with momentum?)
> Ghost

» Creating a Ghost from movements
» Player

» Recording movement

Ordering the Tasks

Try to make the game playable as quickly as possible.

For example, implementing switches and removable barriers can
come after movement.

Breakdown and Design

» The better your group communicate the design, the easier it is
to work on different portions in parallel.

» If you are waiting for each other a lot, then you have not
communicated the design well enough.

Fixing The Design

What to do if you make the wrong design decision?

» Try to catch and fix issues early.

» But, changes can affect multiple parts of the code.

» Keep all group members in the loop.

» Decide what process is to change the design while keeping
everyone in the loop.

	Design
	Software Design Example

