APS360 Fundamentals of AI

Lisa Zhang

Lecture 13; March 14, 2019

Agenda

- Reinforcement Learning
- Unfortunately no code today

Reinforcement Learning

Example

- Game playing
 - Backgammon
 - ► Go
- Robot control
 - Make a humanoid robot walk
 - Fly a helicopter
- Control a power station
- Manage an investment portfolio

Let's say we want to build a neural network agent to play Pong.

- Input: pixel intensities of the screen over the last few frames
- Output: how to move the paddle
- Use a convolutional network, maybe with a few fully-connected layers at the end

Why can't we do this?

What would the loss function be?

- We don't have the "correct" answer (ground truth move) at each step
- ▶ We have a signal to tell us whether our agent won the game.
- ... but the signal is delayed (we don't see the signal until the end of the game)

Reinforcement learning is different from supervised learning:

- There is no supervision (no "correct" answer), only a reward signal
- There is a notion of "time"
- ► Feedback is delayed, not instantaneous
- Agent's action affects the subsequent data it receives

Reward

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward (with possible discounting)

Examples of Rewards

Game playing:

- positive reward for winning
- negative reward for losing
- Making a humanoid walk:
 - positive reward for forward motion
 - negative reward for falling over
- Control a power station:
 - positive reward for producing power
 - negative reward for exceeding safety thresholds
- Manage an investment portfolio:
 - positive reward for each \$ in bank

Reward Hypothesis

All goals can be described by the maximization of expected cumulative reward.

Terminology

Environment

- Provides the agent with the current observation
- Provides a reward at each time step
- Agent
 - Computes the current state given the current observation, and potentially other saved information
 - Chooses an action at each time step, given the state

The goal of the agent is to selection actions to maximize total future reward.

Agent and the Environment

- The envrionment emits observation O_t
- The agent computes the next state S_t
- The agent executes action A_t given the state S_t
- The environment emits scalar reward R_t

Example: Go

- State: position on the board
- Reward:
 - 0 if the game hasn't ended
 - ▶ 1 if agent wins
 - -1 if opponent wins
- Action: make a legal Go move

Goal: learn a model that, given the state, finds the optimal action

Example: Walking

 $https://www.youtube.com/watch?v{=}EQRsvCwME0g$

https://github.com/openai/gym/wiki/BipedalWalker-v2

- **State**: information about the joints (speed, angle, etc)
- Reward:
 - positive reward for moving forward
 - negative reward for falling over
- Action:
 - forces to apply to each joint

Goal: learn a model that, given the state, finds the optimal action

Example: Pong

https://www.youtube.com/watch?v=YOW8m2YGtRg

- Observation: current screen pixel intensities
- State: screen intensities in the last few time steps
 - to encode ball velocity

Major Components of an RL Agent

- Policy: an agent's behaviour function
- Value function: how "good" is each state and/or action (its expected future reward)
- Model: the agent's representation of the environment

Policy

- A policy is the agent's behaviour
- A function from state to action, which can be
 - deterministic: $a = \pi(s)$
 - stochastic: $\pi(a|s) = P[A_t = a|S_t = s]$

Value Function

- A value function is a prediction of future reward, assuming we follow a particular policy
- Used to evaluate the goodness or badness of states

Model

A model predicts what the environment will do next

- predict the next state
- predict the next reward

Types of RL Agents

An RL agent can contain machine learning models that learns one or more of the policy, value function, or model.

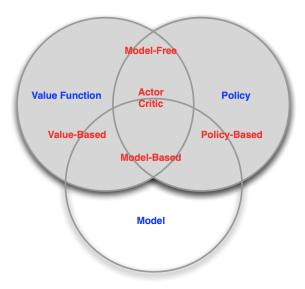
- Policy Based agent:
 - learn policy function only (no estimate of value function, no prediction of the environment)
- Value Based agent:
 - learn value function only
 - implicit policy: choose the action that maximize the value function
- Actor Critic:
 - has an explicit policy (actor)
 - also learns a value function (critic)

Model Free vs Model Based RL

Model Free agent:

- Only policy and/or value functions
- No model
- Model Based agent:
 - Policy and/or value functions
 - Model (to predict what the environment will do next)

RL Agent Taxonomy



Reinforcement Learning

- The environment is initially unknown
- ► The agent interacts with the environment, and receives rewards
- The agent improves its policy based on those rewards

Example: Pong

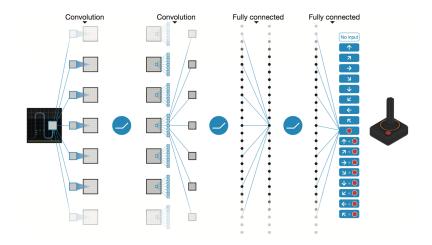
https://www.youtube.com/watch?v=YOW8m2YGtRg

- Policy Based agent
 - Input to the policy function: pixel intensities (over last few time steps?)
 - Output of the policy function: velocity of paddle

https://www.youtube.com/watch?v=V1eYniJ0Rnk

- Value Based agent
 - Input to the value function:
 - pixel intensities (over last 4 time steps)
 - Output of the value function:
 - expected future rewar for each possible action

Model Architecture



From https://towardsdatascience.com/atari-reinforcement-learning-in-depth-part-1-ddqn-ceaa762a546f

Policy Learning

- A policy function takes the current state, and outputs the move the agent should take:
 - deterministic: $a = \pi(s)$
 - stochastic: $\pi(a|s) = P[A_t = a|S_t = s]$
- We can parameterize π using a neural network!

We wanted to build a neural network agent to play Pong:

- Input: pixel intensities of the screen over the last few frames
- Output: how to move the paddle

What type of RL agent are we describing?

We wanted to build a neural network agent to play Pong:

- Input: pixel intensities of the screen over the last few frames
- Output: how to move the paddle

What type of RL agent are we describing?

- policy-based, model-free
- we would be learning a policy function

Training the Policy Function: Idea

Why can't we just update the parameters of the neural network to maximize the immediate reward?

Training the Policy Function: Idea

Why can't we just update the parameters of the neural network to maximize the immediate reward?

- Some "good" moves may not produce an immediate reward
- We want to to maximize all future reward

Episode

An episode is a sequence:

 $S_0, A_0, R_0, S_1, A_1, R_1, \ldots S_T, A_T, R_T$

that concludes with a terminal state.

In our game-playing example, an **episode** is one "match" or one "game".

Return

The **discounted return** at a time step R_t is defined to be:

$$G_t = \sum_{s=t}^T \gamma^{s-t} R_s$$

Where $0 < \gamma \leq 1$ is a constant **discount factor**.

With discounting, getting a reward now is better than getting the same reward later on

Training the Policy Function: Idea

Update the parameters of the neural network to maximize the **return**.

Rough idea:

- play several games (several episodes) using the current model weights
- ▶ for each episode *i* and time step *k*, compute the return at that step G⁽ⁱ⁾_k
- ► modify the weights of the neural networks so that actions A⁽ⁱ⁾_k that produce large returns G⁽ⁱ⁾_k are more likely

Exploration vs Exploitation

- Exploitation: Make moves the function already thinks will lead to a good outcome vs
- Exploration: Try making novel moves and see if you discover a way to adjust the function to get even better outcomes

Need a good balance of $\ensuremath{\textbf{exploration}}$ vs $\ensuremath{\textbf{exploration}}$ to learn a good RL agent

Where to go from here?

- ► Textbook: Reinforcement Learning by Sutton & Barto
- David Silver's video lectures: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Half of this lecture is based on David Silver's first lecture
- Tic-tac-toe project: http://www.cs.toronto.edu/~guerzhoy/411_2018/projects/proj4/