APS360 Fundamentals of AI

Lisa Zhang

Lecture 9; Feb 4, 2019

Agenda

- Fully Convolutional Architectures
- Deconvolutions
- Autoencoders

Autoencoder

Fully-convolutional architectures

- Architectures without fully-connected layers
- Useful for generalizing to images of any size
- Also useful for pixel-wise predictions

Pixel-wise prediction

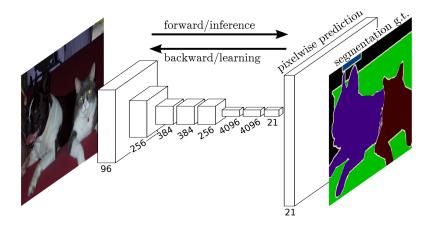
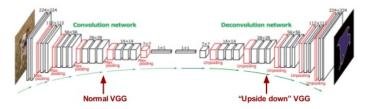


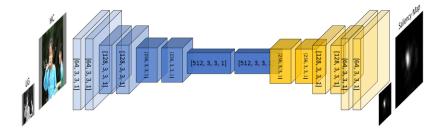
Figure 1: http://deeplearning.net/tutorial/fcn_2D_segm.html

Question:

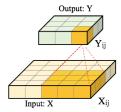

- How to generate pixel-wise prediction?
- How to generate images?

Transpose Convolution

More than one upsampling layer


DeconvNet:

VGG-16 (conv+Relu+MaxPool) + mirrored VGG (Unpooling+'deconv'+Relu)



Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Transpose Convolution

Transpose Convolution Layer

Output: Y Input: X' (upsample x2) Xii

(a) Convolutional layer: the input size is the convolution is performed with stride S = 1and no padding (P = 0). The output Yis of size $W_2 = H_2 = 3.$

(b) Transposed convolutional layer: input size $W_1 = H_1 = 5$; the receptive field F = 3; $W_1 = H_1 = 3$; transposed convolution with stride S = 2; padding with P = 1; and a receptive field of F = 3. The output Yis of size $W_2 = H_2 = 5$.

Figure 2: https://www.mdpi.com/2072-4292/9/6/522/htm

Better Visual

https://github.com/vdumoulin/conv_arithmetic

Transpose Convolutions in PyTorch

Example: Autoencoder

To demonstrate ConvTranspose2d, we will build a network that:

- ▶ Finds a lower dimensional representation of the image
- Then reconstructs the image from the low-dimensional representation

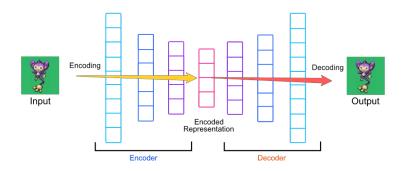
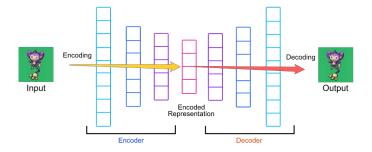



Figure 3: https://hackernoon.com/how-to-autoencode-your-pok%C3%A9mon-6b0f5c7b7d97

The components of an autoencoder

Encoder:

- Input = image
- Output = low-dimensional embedding

Decoder:

- Input = low-dimensional embedding
- Output = image

Why autoencoders?

- Dimension reduction:
 - find a low dimensional representation of the image
- Image Generation:
 - generate new images not in the training set

How to train autoencoders?

Loss function:


- How close were the reconstructed image from the original?
- Mean Sqaure Error Loss: look at the mean square error across all the pixels.
- Optimizer:
 - Just like before!
 - Introduce a new optimizer: Adam
 - Commonly used for other network architectures too
- Training loop:
 - Just like before!

Structure in the Embedding Space

The dimensionality reduction means that there will be structure in the embedding space.

If the dimensionality of the embedding space is not too large, similar images should map to similar locations.

Interpolating in the Embedding Space

Recommended Reading: Issues with Transpose Convolutions

https://distill.pub/2016/deconv-checkerboard/