
APS360 Fundamentals of AI

Lisa Zhang

Lecture 8; Feb 1, 2019

Agenda: First hour

I Neural Network Features
I Preventing Overfitting

I Data Augmentation
I Regularization
I Dropout

Agenda: Second hour

I CNN Architectures
I Fully Convolutional Networks

Neural Network Features

AlexNet from last class

import torchvision.models

alexNet = torchvision.models.alexnet(pretrained=True)
alexNet.features
alexNet.classifier

AlexNet architecture

I Convolutional part: features
I Fully-connected part: classifier

AlexNet features

I Each layer we computes a different representation of the input
I These representations are better-suited (to the classification

task) than the input representation
I These representations turns out to be useful to other tasks!

Assignment 3

In assignment 3, we will use the pre-trained AlexNet.features
network:

I Find the AlexNet features for our gesture image
I Use the features as input to a classification network of our own

. . . the idea of applying knowledge gained from solving one problem
to another problem is called transfer learning.

Assignment 3 (other thoughts)

I You might find torchvision.datasets.ImageFolder useful
I Train/Validation/Test split

I Random split across all images?
I Evenly split the letters?
I Split across users?

Preventing Overfitting

Overfitting and Underfitting

I Detecting underfitting is much harder than detecting overfitting
I Generally, we want to get to a point where we overfit, then

apply techniques to reduce overfitting

Strategies to prevent overfitting

I More data set (expensive, often not feasible)
I Use a smaller network (requires starting over)
I Weight-sharing - as in convolutional neural networks
I Early stopping - stop training at an earlier epoch

Other strategies

I Data Augmentation
I Data Normalization
I Weight Decay
I Model Averaging
I Dropout

Data Augmentation

Make small alternations to the data that you have to get new data

I Flip each image horizontally or vertically (e.g. for cats vs dogs,
not for gesture recognition)

I Shift each pixel a little to the left or right
I Rotate the images a little
I Add noise to the image
I Combination

Data Normalization

Normalize the pixel intensities of an image

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

Remove features of the image that we know are unrelated to the
task we want to perform.

Penalizing Large Weights

Penalize large weights, by adding a term (e.g.
∑

k w2
k) to the loss

function

Why?

Because large weights mean that the prediction relies a lot on the
content of one pixel

Penalizing Large Weights

Penalize large weights, by adding a term (e.g.
∑

k w2
k) to the loss

function

Why?

Because large weights mean that the prediction relies a lot on the
content of one pixel

Weight Decay

I L1 regularization: add a term
∑

k |wk | to the loss function
I Mathematically, this term encourages weights to be exactly 0

I L2 regularization: add a term
∑

k w2
k to the loss function

I Mathematically, in each iteration the weight is pushed towards 0
I Combination of L1 and L2 regularization: add a term∑

k |wk | + w2
k to the loss function

Model Averaging

To prevent overfitting, build many models, and average their
predictions.

Each model use a slightly different architecture, or different initial
weights.

Dropout
Randomly “remove” a portion of neurons from each training
iteration:

A different set of neurons are “removed” in a different iteration.

All neurons are used during test time (for evaluation and for making
actual predictions)

Why dropout

I Prevent weights from depending on each other.
I Encourage each hidden unit to learn “more independent”

features.
I Is actually a form of model averaging: averaging over all

possible connections.

CNN Architectures

Named Architectures

I LeNext
I AlexNet
I VGG
I ResNet

LeNet

AlexNet

VGG

GoogleLeNet (Inception)

Basic idea: repeated modules

Inception Module

ResNet

Basic idea: skip connections

ResNet Basic Block

Fully Convolutional Networks

Idea: do away with fully-connected layers
Image from "Fully Convolutional Networks for Diabetic Foot Ulcer Segmentation"

Why avoid fully connected layers?

I So that the neural network can take arbitrary dimension images
as input

Instead of fully connected layers..

I Use a convolution layer with the same kernel size as hidden
unit size and no padding

I Use global average-pooling

	Neural Network Features
	Preventing Overfitting
	CNN Architectures

