
 
Can we learn good vector representations
(vector embeddings) of student code?
 

Can we use these representations to
reason about student code?

 
 

Many automated tools have been developed
to understand and provide feedback to
computer programming students [4]. 
 

Neural networks have been used to learn
embeddings of words (e.g. word2vec [1] and
GloVe [2]) and images (e.g. image auto
encoders [3]).
  

Can we do the same with student code?

 
 

CS1 student code submission to a Python
programming problem about modifying
lists. A total of 8,476 syntactically correct
submissions, split into 5,086 for training,
1,695 validation and 1,695 test. 
 

Automatically generated 100 unit tests.

MODEL:
 

Analyzing CS1 Student Code Using Code Embeddings

e1

e2

.

.

.

en

y1

y2

y3

y4

.

.

.

y100

Unit-test
Predictions

Student Code Submission

1

0

0

.

.

.

0

0

0

1

.

.

.

0

0

1

0

.

.

.

0

.	.	.

O
ne

-h
ot

 E
nc

od
in

g 
of

 C
ha

ra
ct

er
s

d e f 	 i ... v

0

0

0

.

.

.

0

0

0

0

.

.

.

0

0

0

0

.

.

.

0

h5h4h3 .	.	. hN

Recurrent Neural Network (RNN) Encoder
Neural Network

Decoder

Embedding

h2h1

We treat each syntactically-correct student
code submission as a sequence of
characters.

A character-level RNN that uses bi-directional
Gated Recurrent Units (GRU). It takes the
sequence of characters in a code submission as
input, and outputs its vector embedding.

A multi-layer perceptron (MLP) with
two fully connected layers. It takes
the vector embedding as input, and
predicts the pass/fail of each of the
100 unit tests.

 
 

The entire model (encoder + decoder) is
trained together to predict the unit test output
(pass/fail) of the code submissions in our
training set. 
 

Although the encoder is the only part of the
model that we use in our analysis, the
decoder helps the encoder learn good
embeddings that captures the unit test
pass/fail information.

 

  Final Training Accuracy 90%
  Final Validation Accuracy 84%
  Final Test Accuracy 85%

Text

ANALYSIS:

Code Clustering: 
 

Distances in the embedding space appears
to be meaningful. We find seven tight clusters
of correct solutions (dimensionality reduction
via tSNE):

 
 

Embeddings of words [1] often have structures with
analogies like "king - man + woman = queen". Is there
evidence of similar analogies in our code embedding?

In this example, we:
 

1. Embed the first three pieces of code
 

2. Compute the addition and subtraction of the vectors
 

3. Find the code submission closests to resulting vector

This result suggests that direction vectors in the
embedding space are meaningful, and can represent
complex programming concepts.

Key References:
[1] Mikolov et al. (2013) Distributed Representations
of Words and Phrases and their Compositionally
[2] Pennington et al. (2014) GloVe: Global Vectors for
Word Representation
[3] Cheng et al. (2018) Deep Convolutional
AutoEncoder-based Lossy Image Compression
[4] Keuning et al. (2019) A Systematic Literature Review
of Automated Feedback Generation for Programming
Exercises
 

Acknowledgements: We thank Prof. Andrew
Petersen for the data and the helpful feedback. We
thank Haotian Yang for some auxiliary model results.

 
 
Can we use code embeddings to predict
student understanding of concepts?

Can we use code embeddings to help give
students feedback?

Green and black
clusters at the bottom
left contain solutions

that iterated through the
list forwards

All five clusters in
the upper right

contain solutions
that iterated

through the list
backwards

Turquois and red
clusters differ only in

whitespace

Robert Bazzocchi1, Micah Flemming2, Lisa Zhang2 1University of Toronto, 2University of Toronto Mississauga

 
Can we use the embeddings to
make predictions about other
features of the code?
 

Task 1 Error Identification:
Identify whether a code submission
throws a Python exception exception.

Task 2 Error Classification:
Identify what type of error a code
submission throws. We grouped the
errors in to four classes: No error,
IndexError, RecursionError or
Timeout, and Other.
 

Input

  Test Accuracy

Task1 Task2

79% 62%Unit test
81% 75%Code

    Auxillary (New) Tasks:

91% 87%Embedding

    Research Questions:

    Background:

    Data:

    Future Work:

    Training:

    Code Clustering:     Analogies:


