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Agenda

I Reinforcement Learning
I Unfortunately no code today

Goal:

I Understand standard terminology used in RL
I Be able to set up an RL problem

I What is the state?
I What are the possible actions?
I What are the rewards?
I What discount factor should we use?
I What should the model architecture look like? (What are the

input/output to our model?)
I We won’t actually train an RL model



Reinforcement Learning



Example

I Playing Go:
https://www.youtube.com/watch?v=HT-UZkiOLv8

I Mario: https://www.youtube.com/watch?v=L4KBBAwF_bE
I Breakout: https://www.youtube.com/watch?v=V1eYniJ0Rnk
I Biped: https://www.youtube.com/watch?v=TEFXp2Ro-10



Game Playing as Classification?

Let’s say we want to build a neural network agent to play Breakout.

I Input: pixel intensities of the screen over the last few frames
I Output: how to move the paddle (left, right, or no movement)

We can build a convolutional network to predict the correct
movement.

Q: Why can’t we just train the conv net like before? (e.g. with
CrossEntropy loss)



Game Playing: Difficulty

Problem: We don’t have the “correct” answer (ground truth move)
at each step

I We have a signal to tell us whether our agent completed the
game.

I . . . but the signal is delayed . . .
I we don’t see the signal until the end of the game.

Q: Why can’t we just use win/loss information as a label for
whether the current move is good/bad?



Reinforcement Learning

Reinforcement learning is different from supervised learning:

I There is no supervision (no “correct” answer), only a scalar
reward signal

I There is a notion of “time” (steps/moves)
I Feedback is delayed, not instantaneous
I Agent’s action affects the subsequent data it receives



Reinforcement Learning Setup

I Environment
I Provides the agent with the current state
I Provides a reward at each time step

I Agent
I Chooses an action at each time step, given the state
I Can modelled using a neural network!

Representing the state and the action can be tricky – Worksheet



Reward

I A reward Rt is a scalar feedback signal
I The goal of the agent is to selection actions to maximize total

future reward.



Bad Rewards

Setting up good rewards to get good agent behaviour is tricky.



Good Rewards

I Sparse reward: there is a nonzero reward in a few time steps
I e.g. win/loss at the end

I Dense reward: there is a nonzero reward in most time steps
I when possible, it is easier (faster) to train with dense rewards

Worksheet



Reward Hypothesis

All reinforcement learning task can be trained by
maximizing some (correctly defined) accumulative reward.

Q: Do you believe in the reward hypothesis? Why or why not?



Episode

An episode is a sequence:

S0, A0, R0, S1, A1, R1, . . . ST , AT , RT

that concludes with a terminal state.

In our game-playing examples, an episode is one “match” or one
“game”.



Return

The discounted return at a time step Rt is defined to be:

Gt =
∑T

s=t γ
s−tRs

Where 0 < γ ≤ 1 is a constant discount factor.

With discounting, getting a reward now is better than getting the
same reward later on.



Major Possible Components of an RL Agent

I Policy: an agent’s behaviour function
I Value function: expected future reward at a state
I Model: the agent’s representation of the environment

Let’s look at each of these components in turn.



Policy

I A policy is the agent’s behaviour: the action it chooses at a
state. It is usually represented with the letter π

I The policy function is a function that maps state to action
I deterministic: a = π(s)
I stochastic: π(a|s) = P[At = a|St = s]

We can parameterize π using a neural network!



Value Function

I A value function is a prediction of future reward, assuming we
follow a particular policy

I Used to evaluate the goodness or badness of states
I The value function is a function that maps state to expected

discounted return
I The Q-function maps (state, action) pairs to expected

discount return

We can parameterize the Q-function using a neural network!



Model

I A model predicts what the environment will do next
I predict the next state (given the current state and an action to

take)
I predict the next reward



Types of RL Agents

An RL agent can contain machine learning models that learns one or
more of the policy, value function, or model.

I Policy Based agent:
I learn policy function only (no estimate of value function, no

prediction of the environment)
I Value Based agent:

I learn value function only
I implicit policy: choose the action that maximize the value

function of the next state
I Actor Critic:

I has an explicit policy (actor)
I also learns a value function (critic)



Model Free vs Model Based RL

I Model Free agent:
I Only policy and/or value functions
I No model

I Model Based agent:
I Policy and/or value functions
I Model (to predict what the environment will do next)



RL Agent Taxonomy



Example of Policy Based Agent: Pong

https://www.youtube.com/watch?v=YOW8m2YGtRg

I Policy Based agent
I Input to the policy function: pixel intensities (over last few time

steps?)
I Output of the policy function: velocity of paddle



Example of Value Based Agent: Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

I Value Based agent
I Input to the model:

I pixel intensities (over last 4 time steps)
I Output of the model:

I expected future reward for each possible action



Model Architecture

From https://towardsdatascience.com/atari-reinforcement-learning-
in-depth-part-1-ddqn-ceaa762a546f



Reinforcement Learning

I The environment is initially unknown
I The agent interacts with the environment, and receives rewards
I Based on the rewards / discounted returns, update the agent

weights

The precise way in which the agent is trained is beyond the scope of
this course.



Training the Policy Function: Overview

Update the parameters of the neural network to maximize the
return.

Rough idea:

I play several games (several episodes) using the current model
weights

I for each episode i and time step k, compute the return at that
step G(i)

k
I modify the weights of the neural networks so that actions A(i)

k
that produce large returns G(i)

k becomes more likely



Training the Policy Function: Idea

Q. Why can’t we just update the parameters of the neural network
to maximize the immediate reward (rather than the discounted
return)?

(This way, we won’t have to wait until an episode is complete.)



Using the Policy/Value Function

Q. How should we decide what move to take based on the output of
the policy/value function?

As an example, let’s say that we are playing breakout. The policy’s
prediction distribution over the next move looks like this:

I 0.8 = move paddle left
I 0.2 = move paddle right

Alternatively, the estimated discounted return for the two actions
looks like this:

I 78 = move paddle left
I 17 = move paddle right

Which move should we actually choose?



Exploration vs Exploitation

I Exploitation: Make moves the function already thinks will
lead to a good outcome vs

I Exploration: Try making novel moves and see if you discover
a way to adjust the function to get even better outcomes

Need a good balance of exploration vs exploitation to learn a
good RL agent



Epsilon Greedy Policy

I Use a “greedy” approach with probability 1− ε
I Choose the action with the highest probability or estimated

return
I Choose a random action with probability ε

You could change ε over time – choosing a smaller ε as training
progresses.



Where to go from here?

I Textbook: Reinforcement Learning by Sutton & Barto
I David Silver’s video lectures:

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
I Half of this lecture is based on David Silver’s first lecture


	Reinforcement Learning

