
APS360 Artificial Intelligence Fundamentals

Lisa Zhang

Lecture 13; July 8, 2019



Agenda

Last class:

I Generative RNN
I Training using teacher-forcing
I Generating new sequences (temperature setting)

Today:

I Mid-Course Survey
I Progress Meeting
I Generative Adversarial Networks
I Adversarial Examples



Mid-Course Survey

https://forms.gle/WpcG8nirrNw9inXx9

I The survey is compeletely anonymous
I Only 5 questions – your response can be as short or as long as

you want
I Help me improve your APS360 learning experience
I Use the survey to tell me anything you want



Project Progress Meeting



Why?

I So you have some one-on-one time with a ML researcher
I So that you’re on the right track
I So that everyone on your team is contributing



Scheduling

I Email your TA with several times that you are available
I If you really can’t find a time before July 15, please email me
I Send your TA your project proposal



Before the meeting. . .

I You should have all your data collected and cleaned
I You should be able to show your data to your TA, to give them

some intuition about your problem
I There should be some code that the TA can look at

In the past, teams that have at least a baseline model implemented
benefited most from the progress meeting.



Generative Models



Supervised vs Unsupervised Learning

From week 1:

I Supervised Learning: learning a function that maps an input
to an output based on example input-output pairs

I Unsupervised Learning: learning the structure of some
(unlabelled) data

Learning to generate new data is an unsupervised learning task

I Yes, there is a loss function
I There is an auxiliary task that we know the answer to
I But there is no “label” or “ground truth” with respect to the

actual task that we want to accomplish.



Example

Q: Are these supervised or unsupervised learning task?

I Task 1: Predict the next character given all the previous
characters in a “Trump tweet”

I Task 2: Generate a new “Trump tweet”

Task 1 is supervised, and is an example of a discriminative model

Task 2 is unsupervised, and is an example of a generative model.



Example

Q: Are these supervised or unsupervised learning task?

I Task 1: Predict the next character given all the previous
characters in a “Trump tweet”

I Task 2: Generate a new “Trump tweet”

Task 1 is supervised, and is an example of a discriminative model

Task 2 is unsupervised, and is an example of a generative model.



Generative Models

I A generative model learns the structure of a set of input
data, and can be used to generate new data

I Examples:
I Autoencoders
I RNN for text generation



Review Autoencoders - Code!



Autoencoder outputs are Blurry
These faces are generated using a variant of autoencoders

https://www.youtube.com/watch?v=XNZIN7Jh3Sg



Autoencoders uses MSELoss

I Blurry images, blurry backgrounds
I Why? Because the loss function used to train an autoencoder

is the mean square error loss (MSELoss)
I To minimize the MSE loss, autoencoders predict the “average”

pixel – e.g. average the background

Can we use a better loss function?



Generative Adversarial Network



Generative Adversarial Network
Idea: train two networks

I Generator network: try to fool the discriminator by
generating real-looking images

I Discriminator network: try to distinguish between real and
fake images

The loss function of the generator (the model we care about) is
defined by the discriminator!



GAN Architecture

I Generator network:
I Input: a random noise vector (Q: Why do we need to input

noise?)
I Output: a generated image

I Discriminator network: try to distinguish between real and
fake images

I Input: an image
I Output: a binary label (real vs fake)



Training GANs: two-player (minmax) game

Play a minmax game:

I the discriminator will try to do the best job it can
I the generator is set to make the discriminator as wrong as

possible



Loss function for min-max game

Tune discriminator weights to:

I maximize the probability that the
I discriminator labels a real image as real
I discriminator labels a generated image as fake
I Q: What loss function should we use?

Tune generator weights to:

I maximize the probability that. . .
I discriminator labels a generated image as real
I Q: What loss function should we use?



Loss function for min-max game

Tune discriminator weights to:

I maximize the probability that the
I discriminator labels a real image as real
I discriminator labels a generated image as fake
I Q: What loss function should we use?

Tune generator weights to:

I maximize the probability that. . .
I discriminator labels a generated image as real
I Q: What loss function should we use?



Training

Alternate between:

I Training the discriminator
I Training the generator



Caveat before we look at code

I Can work very well, but very difficult to train!
I Difficult to numerically see whether there is progress

I Plotting the “training curve” (discriminator/generator loss)
doesn’t help much

I Takes a long time to train (a long time before we see progress)
I To make the GAN train faster, we’ll use:

I LeakyReLU Activations instead of ReLU
I Batch Normalization (later)



GAN: Discriminator

class Discriminator(nn.Module):
def __init__(self):

super().__init__()
self.model = nn.Sequential(

nn.Linear(28*28, 300),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(300, 100),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(100, 1))

def forward(self, x):
x = x.view(x.size(0), -1)
out = self.model(x)
return out.view(x.size(0))



Leaky Relu activation

Like a relu, but “leaks” data:

I f (x) = x if x >= 0
I f (x) = αx if x < 0

You’ve implemented this in assignment 1.

Reason:

I Always have some information pass through in the forwards
pass

I Always have some information pass back in the backwards pass
I Better weight updates during the backwards pass



GAN: Generator

class Generator(nn.Module):
def __init__(self):

super().__init__()
self.model = nn.Sequential(

nn.Linear(100, 300),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(300, 28*28),
nn.Sigmoid())

def forward(self, x):
out = self.model(x).view(x.size(0), 1, 28, 28)
return out



Training the Discriminator

#images = batch of images
#batch_size = images.size(0)
noise = torch.randn(batch_size, 100)
fake_images = generator(noise)
inputs = torch.cat([images, fake_images])
labels = torch.cat([torch.zeros(batch_size)), # real

torch.ones(batch_size)]) # fake
d_outputs = discriminator(inputs)
d_loss = criterion(d_outputs, labels)

(Labels: real=0, fake=1)



Training the Generator

noise = torch.randn(batch_size, 100)
fake_images = generator(noise)
outputs = discriminator(fake_images)
generator.zero_grad()
g_loss = criterion(outputs, torch.zeros(batch_size))

(Labels: real=0, fake=1)



Let’s run the code!



Mode Collapse

I Mode = “average”
I GAN model learns to generate one type of input data (e.g. only

digit 1)
I Generating anything else leads to detection by discriminator
I Generator gets stuck in that local optima



Batch Normalization

Normalization on input data helps training. But what about the
hidden activations?

I Training time: normalize activations based on mini-batch
statistics, and keep track of those statistics

I Test time: normalize activations based on saved statistics



Balance between Generator and Discriminator

If the discriminator is too good, then the generator will not learn

I Remember that we are using the discriminator like a “loss
function” for the generator

I If the discriminator is too good, small changes in the generator
weights won’t change the discriminator output

I If small changes in generator weights make no difference, then
we can’t incrementally improve the generator



GAN now

https://arxiv.org/pdf/1710.10196.pdf (2018)



CycleGAN

https://junyanz.github.io/CycleGAN/ (2017)



CartoonGAN

http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.pdf



Adversarial Examples



What is this a picture of?



What is this a picture of?



Adversarial attack

Goal: Choose a small perturbation ε on an image x so that a neural
network f misclassifies x + ε.

Approach:

Use the same optimization process to choose ε to minimize the
probability that

f (x + ε) = correctclass

We are treating ε as the parameters.



Targeted vs Non-Targeted Adversarial Attack

Non-targeted attack

Minimize the probability that f (x + ε) = correctclass

Targeted attack

Maximize the probability that f (x + ε) = targetclass



White-box Adversarial Attack

I Assumes that the model is known
I We need to know the architectures and weights of f to

optimize ε



Black-box Adversarial Attack

I Don’t know the architectures and weights of f to optimize ε
I Substitute model mimicking target model with known,

differentiable function
I adversarial attacks often transfer across models!



Printed Objects

https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-
07/robust-adversarial-examples/iphone.mp4



3D Objects

https://www.youtube.com/watch?v=piYnd_wYlT8



Printed Pictures

https://www.youtube.com/watch?v=MIbFvK2S9g8&feature=youtu.be



Defenses Against Adversarial Attack

I Active area of research



Failed Defenses

I Generative pre-training
I Adding noise at test time
I Averaging many models
I Weight decay
I Adding noise at training time
I Adding adversarial noise at training time
I Dropout


	Project Progress Meeting
	Generative Models
	Review Autoencoders - Code!
	Generative Adversarial Network
	Let's run the code!
	Adversarial Examples

