APS360 Fundamentals of AI

Lisa Zhang

Lecture 12; July 4, 2019

Agenda

- Midterm
- Plan for rest of course
- RNN to generate text

Midterm

Midterm

- Very well done
 - Average: 72%
 - Median: 74%
- Midterm paper scan available on Quercus
- If you want the physical copy, please come to office hours
- I'll accept remark requests by tomorrow July 5th

Plan for Rest of Course

Lectures

- Generative RNN
- Generative Adversarial Network
- Reinforcement Learning (???)
- Ethics and Fairness in AI

Alternative Plan. Thoughts?

- Generative RNN
- Generative Adversarial Network
- Reinforcement Learning Interpreting Neural Networks
- Ethics and Fairness in AI

Lab will be for Project Help

All your TAs will be present on Thursdays 7pm-8pm

- July 11
- July 18
- July 25

Office Hours

Move office hours to Monday 4pm-5pm?

Tutorial Next Week on Google Cloud

And rew will be delivering the tutorial next week 6pm-7pm using Google Cloud

Project

- Proposals were generally very well done (79% average)
- Try to have a "minimum submittable project" early on
- Look at the writing feedback can help you create a more impressive report that people are more likely to read

Project

TA Mentor allocations:

- Jake: Pokemon, News, Stock, Objects
- Farzaneh: Colour, Faces, Books, Painting
- Huan: Instrumental, Music, Audio, Chatbot, Cars
- Andrew: Pets, Food, Medical, Font

Reach out to your mentors by July 9th.

Text Generation with RNN

Today's Task: Generate Trump Tweets

- ► Dataset: ~20000 Trump Tweets from 2018
- At most 140 characters
- Remove tweets that starts with "http" (tweet with link only)
- To help with training, we will
 - prepend all tweets with a special "" token (beginning of string)
 - append all tweets with a special "" token (end of string)

Let's look at some data!

```
(Follow along in Colab: http://bit.ly/GenRNN )
```

Lecture Struture

- Difference betwen predictive -> generative RNN
- Test-time behaviour (how to generate a tweet)
- Training-time behaviour (what loss to use)
 - Teacher-forcing
- Jupyter Notebook (coding!)
- More test-time behaviour
 - Temperature

RNN Review

RNN Hidden States

RNN For Prediction:

- Process tokens one at a time
- Hidden state is a representation of all the tokens read thus far

RNN Hidden States

RNN For Prediction:

- Process tokens one at a time
- Hidden state is a representation of all the tokens read thus far

RNN For Generation:

- Generate tokens one at a time
- Hidden state is a representation of all the tokens to be generated

RNN Functions

RNN For Prediction:

- Update hidden state with new input (token)
 - hidden = update_function(hidden, input)
- Get prediction (e.g. distribution over possible labels):
 - output_distribution = prediction_function(hidden)

RNN Functions

RNN For Prediction:

- Update hidden state with new input (token)
 - hidden = update_function(hidden, input)
- Get prediction (e.g. distribution over possible labels):
 - output_distribution = prediction_function(hidden)

RNN For Generation:

- Get prediction distribution of next token
 - token_distribution = prediction_function(hidden)
- Generate a token from the distribution
 - token = sample_from(token_distribution)
- Update the hidden state with new token:
 - hidden = update_function(hidden, input)

Text Generation Diagram

- Get prediction distribution of next token
 - token_distribution = prediction_function(hidden)
- Generate a token from the distribution
 - token = sample_from(token_distribution)
- Update the hidden state with new token:
 - hidden = update_function(hidden, input)

Unlike other models we discussed so far, the training time behaviour of Generative RNNs will be **different** from the test time behaviour

Test time behaviour:

- At each time step:
 - token_distribution = prediction_function(hidden)
 - token = sample_from(token_distribution)
 - hidden = update_function(hidden, token)

Training Time Behaviour of Generative RNN

During training, we try to get the RNN to generate one particular sequence in the training set:

- At each time step:
 - token_distribution = prediction_function(hidden)
 - Compare the token_distribution with the actual next token
- Q1: What kind of a problem is this? (regression or classification?)
- Q2: What loss function should we use during training?

Text Generation: Step 1

First classification problem:

- Start with an initial hidden state
- Update the hidden state with a "<BOS>" (beginning of string) token, so that the hidden state becomes meaningful (not just zeros)
- Get the distribution over the first character
- Compute the cross-entropy loss against the ground truth (R)

Text Generation with Teaching Forcing

Second classification problem:

- Update the hidden state with the ground truth token (R) regardless of the prediction from the previous step
 - This technique is called teaching forcing
- Get the distribution over the second character
- Compute the cross-entropy loss against the ground truth (I)

Text Generation: Later Steps

Continue until we get to the "<EOS>" (end of string) token

Example Code

- We'll build a first generative RNN model
- Then, we'll start off with a very inefficient training code that computes the loss one time step at a time
- Then, when we understand what should happen under the hood, we'll switch to a more performant version of the code

(One more slide before Jupyter)

RNN Model

```
class TextGenerator(nn.Module):
def init (self, vocab size, hidden size):
  super(TextGenerator, self). init ()
  self.ident = torch.eye(vocab size)
  self.rnn = nn.GRU(vocab size,
                     hidden size,
                     batch first=True)
  self.decoder = nn.Linear(hidden_size, vocab_size)
def forward(self, inp, hidden=None):
  inp = self.ident[inp]
  output, hidden = self.rnn(inp, hidden)
  output = self.decoder(output)
  return output, hidden
```

Jupyter Notebook!

Sampling a Token during Test Time

Unlike in an actual classification problem, always generating the token with the highest probability **won't work**.

Q: Why?

Sampling from a multinomial distribution

Suppose that the RNN's predicted (softmax) distribution of the first token was:

Then,

- If temperature = 1, probability of sampling A = 60%
- If temperature < 1, probability of sampling A > 60%
 - Low temperature = less random
- If temperature > 1, probability of sampling A < 60%
 - High temperature = more random

Temperature Tradeoff

- Low temperature:
 - Higher quality samples
 - Less variety
- High temperature:
 - More variety
 - Lower quality samples

Training

- Training on CPU is quite slow
- Let's train using a GPU on Google Colab!