Agenda

- Midterm
- Plan for rest of course
- RNN to generate text
Midterm

- Very well done
 - Average: 72%
 - Median: 74%
- Midterm paper scan available on Quercus
- If you want the physical copy, please come to office hours
- I’ll accept remark requests by tomorrow July 5th
Plan for Rest of Course
Lectures

- Generative RNN
- Generative Adversarial Network
- Reinforcement Learning (???)
- Ethics and Fairness in AI
Alternative Plan. Thoughts?

- Generative RNN
- Generative Adversarial Network
- Reinforcement Learning Interpreting Neural Networks
- Ethics and Fairness in AI
Lab will be for Project Help

All your TAs will be present on Thursdays 7pm-8pm

- July 11
- July 18
- July 25
Move office hours to Monday 4pm-5pm?
Tutorial Next Week on Google Cloud

Andrew will be delivering the tutorial next week 6pm-7pm using Google Cloud
Proposals were generally very well done (79% average)

Try to have a “minimum submittable project” early on

Look at the writing feedback – can help you create a more impressive report that people are more likely to read
TA Mentor allocations:

- Jake: Pokemon, News, Stock, Objects
- Farzaneh: Colour, Faces, Books, Painting
- Huan: Instrumental, Music, Audio, Chatbot, Cars
- Andrew: Pets, Food, Medical, Font

Reach out to your mentors by July 9th.
Text Generation with RNN
Today’s Task: Generate Trump Tweets

- Dataset: ~20000 Trump Tweets from 2018
- At most 140 characters
- Remove tweets that starts with “http” (tweet with link only)

To help with training, we will

- prepend all tweets with a special “” token (beginning of string)
- append all tweets with a special “” token (end of string)

Let’s look at some data!

(Follow along in Colab: http://bit.ly/GenRNN)
Lecture Structure

- Difference between predictive -> generative RNN
- Test-time behaviour (how to generate a tweet)
- Training-time behaviour (what loss to use)
 - Teacher-forcing
- Jupyter Notebook (coding!)
- More test-time behaviour
 - Temperature
RNN Review

one to one

one to many

many to one

many to many

many to many
RNN Hidden States

RNN For Prediction:

- Process tokens one at a time
- Hidden state is a representation of all the tokens read thus far
RNN Hidden States

RNN For Prediction:

- Process tokens one at a time
- Hidden state is a representation of all the tokens read thus far

RNN For Generation:

- Generate tokens one at a time
- Hidden state is a representation of all the tokens to be generated
RNN Functions

RNN For Prediction:

- Update hidden state with new input (token)
 - hidden = update_function(hidden, input)
- Get prediction (e.g. distribution over possible labels):
 - output_distribution = prediction_function(hidden)
RNN Functions

RNN For Prediction:

- Update hidden state with new input (token)
 - hidden = update_function(hidden, input)
- Get prediction (e.g. distribution over possible labels):
 - output_distribution = prediction_function(hidden)

RNN For Generation:

- Get prediction distribution of next token
 - token_distribution = prediction_function(hidden)
- Generate a token from the distribution
 - token = sample_from(token_distribution)
- Update the hidden state with new token:
 - hidden = update_function(hidden, input)
Text Generation Diagram

- Get prediction distribution of next token
 - token_distribution = prediction_function(hidden)
- Generate a token from the distribution
 - token = sample_from(token_distribution)
- Update the hidden state with new token:
 - hidden = update_function(hidden, input)
Test Time Behaviour of Generative RNN

Unlike other models we discussed so far, the training time behaviour of Generative RNNs will be **different** from the test time behaviour.

Test time behaviour:

- At each time step:
 - `token_distribution = prediction_function(hidden)`
 - `token = sample_from(token_distribution)`
 - `hidden = update_function(hidden, token)`
Training Time Behaviour of Generative RNN

During training, we try to get the RNN to generate one particular sequence in the training set:

- At each time step:
 - \texttt{token_distribution} = \texttt{prediction_function(hidden)}
 - Compare the \texttt{token_distribution} with the \texttt{actual} next token

Q1: What kind of a problem is this? (regression or classification?)
Q2: What loss function should we use during training?
Text Generation: Step 1

First classification problem:

- Start with an initial hidden state
- Update the hidden state with a "<BOS>" (beginning of string) token, so that the hidden state becomes meaningful (not just zeros)
- Get the distribution over the first character
- Compute the cross-entropy loss against the ground truth (R)
Text Generation with Teaching Forcing

Second classification problem:

- Update the hidden state with the **ground truth** token (R) regardless of the prediction from the previous step
 - This technique is called **teaching forcing**
- Get the distribution over the second character
- Compute the cross-entropy loss against the ground truth (I)
Text Generation: Later Steps

Continue until we get to the “<EOS>” (end of string) token
We’ll build a first generative RNN model

Then, we’ll start off with a very inefficient training code that computes the loss one time step at a time

Then, when we understand what should happen under the hood, we’ll switch to a more performant version of the code

(One more slide before Jupyter)
class TextGenerator(nn.Module):
 def __init__(self, vocab_size, hidden_size):
 super(TextGenerator, self).__init__()
 self.ident = torch.eye(vocab_size)
 self.rnn = nn.GRU(vocab_size,
 hidden_size,
 batch_first=True)
 self.decoder = nn.Linear(hidden_size, vocab_size)

 def forward(self, inp, hidden=None):
 inp = self.ident[inp]
 output, hidden = self.rnn(inp, hidden)
 output = self.decoder(output)
 return output, hidden
Jupyter Notebook!
Unlike in an actual classification problem, always generating the token with the highest probability \textit{won’t work}.

Q: Why?
Sampling from a multinomial distribution

Suppose that the RNN’s predicted (softmax) distribution of the first token was:

- A = 60%, B = 40%, everything else = 0%

Then,

- If temperature = 1, probability of sampling A = 60%
- If temperature < 1, probability of sampling A > 60%
 - Low temperature = less random
- If temperature > 1, probability of sampling A < 60%
 - High temperature = more random
Temperature Tradeoff

- Low temperature:
 - Higher quality samples
 - Less variety

- High temperature:
 - More variety
 - Lower quality samples
Training

- Training on CPU is quite slow
- Let’s train using a GPU on Google Colab!