
APS360 Fundamentals of AI

Lisa Zhang

Lecture 12; July 4, 2019



Agenda

I Midterm
I Plan for rest of course
I RNN to generate text



Midterm



Midterm

I Very well done
I Average: 72%
I Median: 74%

I Midterm paper scan available on Quercus
I If you want the physical copy, please come to office hours
I I’ll accept remark requests by tomorrow July 5th



Plan for Rest of Course



Lectures

I Generative RNN
I Generative Adversarial Network
I Reinforcement Learning (???)
I Ethics and Fairness in AI



Alternative Plan. Thoughts?

I Generative RNN
I Generative Adversarial Network
I Reinforcement Learning Interpreting Neural Networks
I Ethics and Fairness in AI



Lab will be for Project Help

All your TAs will be present on Thursdays 7pm-8pm

I July 11
I July 18
I July 25



Office Hours

Move office hours to Monday 4pm-5pm?



Tutorial Next Week on Google Cloud

Andrew will be delivering the tutorial next week 6pm-7pm using
Google Cloud



Project

I Proposals were generally very well done (79% average)
I Try to have a “minimum submittable project” early on
I Look at the writing feedback – can help you create a more

impressive report that people are more likely to read



Project

TA Mentor allocations:

I Jake: Pokemon, News, Stock, Objects
I Farzaneh: Colour, Faces, Books, Painting
I Huan: Instrumental, Music, Audio, Chatbot, Cars
I Andrew: Pets, Food, Medical, Font

Reach out to your mentors by July 9th.



Text Generation with RNN



Today’s Task: Generate Trump Tweets

I Dataset: ~20000 Trump Tweets from 2018
I At most 140 characters
I Remove tweets that starts with “http” (tweet with link only)

To help with training, we will

I prepend all tweets with a special “” token (beginning of string)
I append all tweets with a special “” token (end of string)

Let’s look at some data!

(Follow along in Colab: http://bit.ly/GenRNN )



Lecture Struture

I Difference betwen predictive -> generative RNN
I Test-time behaviour (how to generate a tweet)
I Training-time behaviour (what loss to use)

I Teacher-forcing
I Jupyter Notebook (coding!)
I More test-time behaviour

I Temperature



RNN Review



RNN Hidden States

RNN For Prediction:

I Process tokens one at a time
I Hidden state is a representation of all the tokens read thus
far

RNN For Generation:

I Generate tokens one at a time
I Hidden state is a representation of all the tokens to be
generated



RNN Hidden States

RNN For Prediction:

I Process tokens one at a time
I Hidden state is a representation of all the tokens read thus
far

RNN For Generation:

I Generate tokens one at a time
I Hidden state is a representation of all the tokens to be
generated



RNN Functions

RNN For Prediction:

I Update hidden state with new input (token)
I hidden = update_function(hidden, input)

I Get prediction (e.g. distribution over possible labels):
I output_distribution = prediction_function(hidden)

RNN For Generation:

I Get prediction distribution of next token
I token_distribution = prediction_function(hidden)

I Generate a token from the distribution
I token = sample_from(token_distribution)

I Update the hidden state with new token:
I hidden = update_function(hidden, input)



RNN Functions

RNN For Prediction:

I Update hidden state with new input (token)
I hidden = update_function(hidden, input)

I Get prediction (e.g. distribution over possible labels):
I output_distribution = prediction_function(hidden)

RNN For Generation:

I Get prediction distribution of next token
I token_distribution = prediction_function(hidden)

I Generate a token from the distribution
I token = sample_from(token_distribution)

I Update the hidden state with new token:
I hidden = update_function(hidden, input)



Text Generation Diagram

I Get prediction distribution of next token
I token_distribution = prediction_function(hidden)

I Generate a token from the distribution
I token = sample_from(token_distribution)

I Update the hidden state with new token:
I hidden = update_function(hidden, input)



Test Time Behaviour of Generative RNN

Unlike other models we discussed so far, the training time behaviour
of Generative RNNs will be different from the test time behaviour

Test time behaviour:

I At each time step:
I token_distribution = prediction_function(hidden)
I token = sample_from(token_distribution)
I hidden = update_function(hidden, token)



Training Time Behaviour of Generative RNN

During training, we try to get the RNN to generate one particular
sequence in the training set:

I At each time step:
I token_distribution = prediction_function(hidden)
I Compare the token_distribution with the actual next token

Q1: What kind of a problem is this? (regression or classification?)

Q2: What loss function should we use during training?



Text Generation: Step 1

First classification problem:

I Start with an initial hidden state
I Update the hidden state with a “<BOS>” (beginning of

string) token, so that the hidden state becomes meaningful
(not just zeros)

I Get the distribution over the first character
I Compute the cross-entropy loss against the ground truth (R)



Text Generation with Teaching Forcing

Second classification problem:

I Update the hidden state with the ground truth token (R)
regardless of the prediction from the previous step

I This technique is called teaching forcing
I Get the distribution over the second character
I Compute the cross-entropy loss against the ground truth (I)



Text Generation: Later Steps

Continue until we get to the “<EOS>” (end of string) token



Example Code

I We’ll build a first generative RNN model
I Then, we’ll start off with a very inefficient training code that

computes the loss one time step at a time
I Then, when we understand what should happen under the

hood, we’ll switch to a more performant version of the code

(One more slide before Jupyter)



RNN Model

class TextGenerator(nn.Module):
def __init__(self, vocab_size, hidden_size):

super(TextGenerator, self).__init__()
self.ident = torch.eye(vocab_size)
self.rnn = nn.GRU(vocab_size,

hidden_size,
batch_first=True)

self.decoder = nn.Linear(hidden_size, vocab_size)

def forward(self, inp, hidden=None):
inp = self.ident[inp]
output, hidden = self.rnn(inp, hidden)
output = self.decoder(output)
return output, hidden



Jupyter Notebook!



Sampling a Token during Test Time

Unlike in an actual classification problem, always generating the
token with the highest probability won’t work.

Q: Why?



Sampling from a multinomial distribution

Suppose that the RNN’s predicted (softmax) distribution of the first
token was:

I A = 60%, B = 40%, everything else = 0%

Then,

I If temperature = 1, probability of sampling A = 60%
I If temperature < 1, probability of sampling A > 60%

I Low temperature = less random
I If temperature > 1, probability of sampling A < 60%

I High temperature = more random



Temperature Tradeoff

I Low temperature:
I Higher quality samples
I Less variety

I High temperature:
I More variety
I Lower quality samples



Training

I Training on CPU is quite slow
I Let’s train using a GPU on Google Colab!


	Midterm
	Plan for Rest of Course
	Text Generation with RNN
	Jupyter Notebook!

