
APS360 Fundamentals of AI

Lisa Zhang

Lecture 10; June 10, 2019

Logistics

I Lab 3 submit late by Wednesday
I Lab 4 due Sunday
I Midterm next Thursday
I We’ll talk about the project this Thursday

Language Modelling

I Text Understanding
I Question Answering
I Sentiment Analysis

I Text Generation
I Sentence completion
I Generating captions, sentences, stories. . .
I Translation

I . . . and more!

Working with Text

Q: How is working with text different (more challenging) from
working with images?

I Grammar, spelling
I Many words to learn
I Choice of working with words vs characters (in English)
I Arbitrary length input / output

Working with Text

Q: How is working with text different (more challenging) from
working with images?

I Grammar, spelling
I Many words to learn
I Choice of working with words vs characters (in English)
I Arbitrary length input / output

Agenda

I Review word2vec and GloVe embeddings
I Working with word embeddings
I Simple sentiment analysis model
I Recurrent neural networks

GloVe Embeddings

Training Word Embeddings

Key idea: the meaning of a word depends on its context, or other
words that appear nearby

Q: True/False - words with similar word2vec/GloVe embeddings
always have similar meanings.

Distance Measures

In order to talk about which words have “similar” GloVe
embeddings, We need to introduce a measure of distance in the
embedding space.

I Euclidean Distance
I Cosine Similarity

Euclidean Distance

The Euclidean distance of two vectors x = [x1, x2, ...xn] and
y = [y1, y2, ...yn] is the 2-norm of their difference x − y :

√∑
i

(xi − yi)2

This is probably the distance measure you are most familiar with.

Q: What is the Euclidean distance between the vectors x = [0, 1]
and y = [0, 2]?

Cosine Similarity
The cosine similarity of two vectors x and y is the cosine of the
angle between the two vectors.

Cosine similarity is useful when we want a distance measure that is
invariant to the magnitude of the vectors.

Q: What is the cosine similarity between the vectors x = [0, 1] and
y = [0, 2]?

Computing Distances in PyTorch

Euclidean Distance:

torch.norm(glove['cat'] - glove['cat'])

Cosine Similarity:

torch.cosine_similarity(glove['cat'].unsqueeze(0), # need extra dim
glove['dog'].unsqueeze(0))

Let’s look at similarities between word embeddings in PyTorch.

Word analogies

One surprising thing about the embedding space is the extent of its
structure.

We often see relationships like this in GloVe embeddings:

king − man + woman ≈ queen

Bias in Word Embeddings

These word anaologies show that machine learning models are
not unbiased

doctor − man + woman ≈??

(See code)

Machine learning models learn the biases present in the data it is
trained on.

Sentiment Analysis

Goal

Given a piece of text, identify the sentiment that the text conveys.

Can be applied to:

I movie reviews
I feedback
I emails
I tweets

Challenges

I Difficult problem in general
I Hard to collect clean, labelled data

Sentiment 140

I 160,000 tweets
I Sentiment determined by emoticon
I Collected by students doing a course project

Q: What are the advantages of using tweets as training data?

Q: What are the challenges of using tweets as training data?

Encoding the Input Data

For each tweet in the training data, we will

1. Split the tweet into words
2. Look up the GloVe embedding for each word, ignoring words

that don’t have embeddings
3. Add up the word embeddings to obtain an embedding for the

entire tweet
4. The tweet embedding will be the input to a neural network

Splitting Into Words

I have to say, I’ve just landed into Lisbon on flight
FR1884, the whole experience was seamless from the
beginning to end! Everyone was extremely helpful but in
particular your cabin crew who were friendly and
professional! Very impressed!!!

Words:

I i
I have
I to
I . . .
I . . .

Word Embeddings

I have to say, I’ve just landed into Lisbon on flight
FR1884, the whole experience was seamless from the
beginning to end! Everyone was extremely helpful but in
particular your cabin crew who were friendly and
professional! Very impressed!!!

Look up GloVe Embeddings

I i: = tensor([1.1891e-01, 1.5255e-01, ...])
I have: = tensor([0.9491, -0.3497, 0.4812, ...])
I to: = tensor([0.6805, -0.0393, 0.3019, ...])
I . . .
I . . .

Tweet Embedding

I have to say, I’ve just landed into Lisbon on flight
FR1884, the whole experience was seamless from the
beginning to end! Everyone was extremely helpful but in
particular your cabin crew who were friendly and
professional! Very impressed!!!

Add up embedding:

I i: = [1.1891e-01, 1.5255e-01, ...]
I have: = [0.9491, -0.3497, 0.4812, ...]
I to: = [0.6805, -0.0393, 0.3019, ...]
I . . .
I Tweet Embedding: = [16.183, 2.2113, ...]

Training a Neural Network

I We will pre-compute tweet embeddings of all our training,
validation, and test data (like Lab 3 transfer learning)

I Each tweet is represented by an embedding vector, which we
put into a DataLoader

I Our neural network will be fully-connected

Neural Network Architecture

I Classifying “happy” vs “sad” is a binary classification problem
I However, we will use two output neurons and CrossEntropyLoss

(instead of one output neuron and BCELoss)
I This architecture has a little more weights, and is usually easier

to train (gets to better performance faster)

Considerations

Q: What are the advantages / disadvantages of this architecture?

Q: What are the advantages / disadvantages of using this dataset?

Q: What are ethical considerations that arise from building this
model and using this dataset?

Q: What are ethical considerations that arise from using GloVe
vectors?

Code!

Let’s write some code!

Limitations

These two sentences will have the same embedding in our model:

I The food was adequate, but just not great
I The food as not just adequate, but great

. . . but they have drastically different meanings.

Our model does not take into account the order of words

Idea #1

Concatenate (and flatten) the word embeddings, then train a neural
network that takes the concatenated embedding as input.

Q: What is a drawback of this idea?

Idea #2

Concatenate the word embeddings, then train a convolutional neural
network that takes the concatenated embedding as input.

Q: What is a drawback of this idea?

Recurrent Neural Networks

Want:

An architecture that

I Can take in variable-sized sequential input
I Can remember things over time: has some sort of memory or

state

Recurrent Neural Networks!

Want:

An architecture that

I Can take in variable-sized sequential input
I Can remember things over time: has some sort of memory or

state

Recurrent Neural Networks!

RNN: Initial Hidden State

I Start with an initial hidden state with a blank slate (can be a
vector of all zeros)

RNN: Update Hidden State

I Hidden state is updated based on previous hidden state, and
the input

I hidden = update_function(hidden, input)

RNN: Continue Updating Hidden State

I Hidden state is updated based on previous hidden state, and
the input using the same neural network as before (weight
sharing).

I hidden = update_function(hidden, input)

RNN: Last Hidden State

I Continue updating the hidden state until we run out of tokens.
I hidden = update_function(hidden, input)

RNN: Compute Prediction

I Use the last hidden state as input to a prediction network
I output = prediction_function(hidden)
I Alternatively, max-pool or average-pool over all computed

hidden states.

RNN Notes

I Not all Recurrent Neural Networks use GloVe embeddings to
represent the input tokens

I We could have used a one-hot encoding
I Not practical with this example
I Possible with a small vocabulary size (total # uniq tokens)

I As an example, we will work with Character-level RNNs in
lab 5

RNN Expectations

I You are not expected to know about the computations that
happen when a hidden state is updated

I You are expected to know how to use a Recurrent Neural
Network in PyTorch

I Let’s take a look!

Batching

I When trainign an RNN, sequences in each batch must all have
the same length

I So, sequences that are shorter needs to be padded
I In practice, try to batch similar-length training examples to

minimize padding

Learning Long-Term Dependencies

I Historically, Recurrent Neural Networks were hard to train
I Better RNN units for learning long-term dependencies:

I Long Short-Term Memory (LSTM): requires an extra cell state
I Gated Recurrent Unit (GRU): only requires a hidden state

GloVe Embedding
Q: What would need to change if we want to use an
100-dimensional GloVe embedding?

class TweetRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(TweetRNN, self).__init__()
self.emb = nn.Embedding.from_pretrained(glove.vectors)
self.rnn = nn.RNN(input_size,

hidden_size,
batch_first=True)

self.fc = nn.Linear(hidden_size, num_classes)

def forward(self, x):
x = self.emb(x)
out, _ = self.rnn(x)
out = self.fc(out[:, -1, :])
return out

	GloVe Embeddings
	Sentiment Analysis
	Recurrent Neural Networks

