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Agenda

Last time:

I Convolutional Architectures
I Discussions about Lab 3

Today:

I First Hour: Preventing Overfitting
I Second hour:

I Transpose Convolutions
I Autoencoders – first unsupervised learning, generative model!



Preventing Overfitting



Overfitting

Neural network learns too much about the idiosyncracies in the
training set that does not generalize.



Q: What factors can increase the chance of overfitting?

I fewer weights or more weights?
I fewer layers or more layers?
I less training data or more training data?
I fewer training iterations or more training iterations?
I fewer artificial neurons or more artificial neurons?
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Underfitting

Neural network does not capture the underlying trend of the data –
there are more generalizable patterns that can be learned.



Detecting Underfitting

I Detecting underfitting is harder than detecting overfitting
I Typically, people choose a model that will overfit, then apply

techniques to reduce overfitting



Preventing Overfitting

Q: What strategies have we discussed for preventing overfitting?



Ideas to Prevent Overfitting

I Use a larger training set (expensive, often not feasible)
I Use a smaller network (requires starting over, might underfit)
I Weight-sharing - as in convolutional neural networks
I Early stopping - stop training at an earlier epoch
I Transfer learning - a network that is pre-trained on a larger

data set



Transfer Learning Features

I Each layer we computes a different representation of the input
I These representations are better-suited (to the classification

task) than the input representation
I These representations turns out to be useful to other tasks!



Other Strategies

I Data Normalization (indirectly, by solving an easier problem)
I Data Augmentation
I Weight Decay
I Model Averaging
I Dropout



Data Normalization

Normalization: adjust input feature values to be scaled similarily

I All the input features should have similar means and standard
deviations

I Less of an issue for images (since all features are pixels), but
could be an issue for other types of data:

I e.g. predicting housing sales price based on number of bedroom,
square footage, . . .

I the input feature should be scaled similarly

For images, having each pixel in the range [0, 1] is usually fine.



Normalization Transforms

In Lab 2 we used this transformation:

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

I subtracts each pixel by 0.5 and divides the result by 0.5.
I each pixel would be in the range [-1, 1]
I we have both positive and negative features

You’re welcome to use this normalization for lab 3.



Data Augmentation

Make small alterations to the training data to obtain “new data”:

I Flip each image horizontally or vertically (e.g. for cats vs dogs,
not for gesture recognition)

I Shift each pixel a little to the left or right
I Rotate the images a little
I Add noise to the image
I Combination of the above



Data Augmentation for Digit Recognition

I See code



Penalizing Large Weights

Penalize large weights, by adding a term (e.g.
∑

k w2
k ) to the loss

function

Q: Why is it not ideal to have large (absolute value) weights?

Because large weights mean that the prediction relies a lot on the
content of one pixel (or one feature)
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Weight Decay

I L1 regularization: add a term
∑

k |wk | to the loss function
I Mathematically, this term encourages weights to be exactly 0

I L2 regularization: add a term
∑

k w2
k to the loss function

I Mathematically, in each iteration the weight is pushed towards 0
I Combination of L1 and L2 regularization: add a term∑

k |wk | + w2
k to the loss function



Weight Decay in PyTorch

L2 weight decay is usually a setting of the optimizer

optim.SGD(model.parameters(), weight_decay=0.001, ...)

See code



Model Averaging

To prevent overfitting, build many models, and average their
predictions.

Each model use a slightly different architecture, different initial
weights, or different subset of the training data.



Dropout
Randomly “remove” a portion of neurons from each training
iteration:

A different set of neurons are “removed” in a different iteration.

All neurons are used during test time (for evaluation and for making
actual predictions)



Why dropout

I Prevent weights from depending on each other.
I Encourage each hidden unit to learn “more independent”

features.
I Is actually a form of model averaging: averaging over all

possible connections.



Dropout for Digit Recognition

See code.

Important to set model.train() or model.eval() to change the
behaviour of the dropout layer.



Transpose Convolution



Pixel-wise prediction

A prediction problem where we label the content of each pixel is
known as a pixel-wise prediction problem

Figure 1: http://deeplearning.net/tutorial/fcn_2D_segm.html

Q: How do we generate pixel-wise predictions?



What we need:

We need to be able to up-sample features, i.e. to obtain
high-resolution features from low-resolution features

I Opposite of max-pooling OR
I Opposite of a strided convolution

We need an inverse convolution – a.k.a a deconvolution or
transpose convolution.



Architectures with Transpose Convolution



Architectures with Transpose Convolution 2



Inverse Convolution

>>> x = torch.randn(2, 8, 64, 64)
>>> conv = nn.Conv2d(in_channels=8,
... out_channels=8,
... kernel_size=5)
>>> y = conv(x)
>>> y.shape

>>> convt = nn.ConvTranspose2d(in_channels=8,
... out_channels=8,
... kernel_size=5)
>>> x = convt(y)
>>> x.shape

should get the same shape back!
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Inverse Convolution + Stride
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Transpose Convolution Layer

Figure 2: https://www.mdpi.com/2072-4292/9/6/522/htm

More at https://github.com/vdumoulin/conv_arithmetic



Output Padding

nn.ConvTranspose2d(in_channels=8,
out_channels=8,
kernel_size=5,
stride=2,
output_padding=1) # +1 to output

# width/height



Autoencoder
To demonstrate ConvTranspose2d, we will build a network that:

I Finds a lower dimensional representation of the image
I Then reconstructs the image from the low-dimensional

representation

Figure 3: https://hackernoon.com/how-to-autoencode-your-
pok%C3%A9mon-6b0f5c7b7d97



The components of an autoencoder

Encoder:

I Input = image
I Output = low-dimensional embedding

Decoder:

I Input = low-dimensional embedding
I Output = image



Why autoencoders?

I Dimension reduction:
I find a low dimensional representation of the image

I Image Generation:
I generate new images not in the training set

Autoencoders are not used for supervised learning. The task is
not to predict something about the image!

Autoencoders are considered a generative model.



How to train autoencoders?

I Loss function:
I How close were the reconstructed image from the original?
I Mean Sqaure Error Loss: look at the mean square error

across all the pixels.
I Optimizer:

I Just like before!
I Introduce a new optimizer: Adam
I Commonly used for other network architectures too

I Training loop:
I Just like before!



Structure in the Embedding Space

The dimensionality reduction means that there will be structure in
the embedding space.

If the dimensionality of the embedding space is not too large, similar
images should map to similar locations.



Interpolating in the Embedding Space
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