
APS360 Fundamentals of AI

Lisa Zhang

Lecture 8; May 30, 2019



Agenda

Last Class:

I Convolutional Neural Networks

Today:

I CNN Architectures
I Fully Convolutional Networks
I Neural Network Debugging
I Train/Test Split



CNN Architectures



Named Architectures

I LeNext
I AlexNet
I VGG
I ResNet

You should know:

I How do we interpret CNN figures?
I How were these architectures different from the previous?
I What new idea was introduced?



LeNet



AlexNet

import torchvision.models
alexNet = torchvision.models.alexnet(pretrained=False)



Q: What is new in AlexNet (compared to LeNet)?



VGG

# There are many VGG versions
vgg16 = torchvision.models.vgg.vgg16(pretrained=False)
vgg19 = torchvision.models.vgg.vgg19(pretrained=False)



Q: What is new in VGG (compared to AlexNet)?



GoogLeNet (Inception)

torchvision.models.inception.inception_v3(pretrained=False)

Q: What is new in GoogLeNet that we haven’t seen yet?



Inception Module



ResNet

torchvision.models.resnet.resnet18(pretrained=False)
torchvision.models.resnet.resnet152(pretrained=False)

Q: What is new in ResNet that we haven’t seen yet?

Skip connections to make very deep neural networks



ResNet

torchvision.models.resnet.resnet18(pretrained=False)
torchvision.models.resnet.resnet152(pretrained=False)

Q: What is new in ResNet that we haven’t seen yet?

Skip connections to make very deep neural networks



ResNet Basic Block (Skip Connections)

# normal layer application:
next_activation = layer(activation)
# residual layer application
next_activation = activation + layer(activation)



Skip Connections

I Made it easier to train deeper neural networks
I Information about weight updates are passed backwards from

the output towards the input
I Difficult for information to propagate to the earlier layers

Note: You don’t need to know the math behind why skip
connections are better



Fully Convolutional Networks

Image from "Fully Convolutional Networks for Diabetic Foot Ulcer Segmentation"

Q: How is this network different from what we have seen so far?



Why avoid fully connected layers?

I So that the neural network can (theoretically) take arbitrary
dimension images as input



Instead of fully connected layers..

I Use a convolution layer with the same kernel size as hidden
unit size and no padding

I Use global average-pooling



Neural Network Debugging



Why Debugging Neural Networks is Hard

I Most bugs are invisible and manifest only in poor
performance

I How do you know whether poor performance is due to:
I a bug
I poor architecture/hyperparameter choice
I data quantity/quality
I something else?

Please make sure you flip through the reading:
http://josh-tobin.com/assets/pdf/troubleshooting-deep-neural-networks-01-19.pdf

Slides 1-34, 46-47, 52-75 (for now, there are more useful
information here later)



Steps to building a neural network

1. Start with a simple model
2. Get your training code to run without syntax and runtime errors
3. Get your code to overfit on a small subset of the training set

(single batch)
4. Actual training



1. Simple Model

I Start with something like LargeNet modified to fit the new
problem

I Some number of convolutions, then 1 or 2 fully-connected
layer(s)



2. Common Runtime Errors

I Labels out of order
I Incorrect shapes for tensors
I Incompatible types of tensors (float32 vs float64 vs long)
I Incorrect pre-processing of images (not scaling the pixels to the

range [0, 1], or normalize to mean 0, std 1)
I Incorrect input to the loss function (pre-softmax vs

post-softmax)
I Forgetting optimizer.zero_grad() cleanup step
I Learning rate too high

Recommended solutions for some of these in:
http://josh-tobin.com/assets/pdf/troubleshooting-deep-neural-networks-01-19.pdf



3. Overfit on a batch

Q: What does overfitting on a small data set achieve?

I “Quickly” = maybe ~100 iterations
I Check that your learning rate isn’t too low or too high
I You can use the Adam optimizer:

optim.Adam(model.parameters(), lr=learning_rate)
I Adam generally trains faster than SGD
I Usually the go-to optimizer for modern practitioners



3. Overfit on a batch

Q: What does overfitting on a small data set achieve?

I “Quickly” = maybe ~100 iterations
I Check that your learning rate isn’t too low or too high
I You can use the Adam optimizer:

optim.Adam(model.parameters(), lr=learning_rate)
I Adam generally trains faster than SGD
I Usually the go-to optimizer for modern practitioners



Questions?



Train/Test Split Strategies for Lab 3



Proposed Strategy #1

Strategy:

I Each student has three sets of gesture images submitted
I Place two of those sets in the training/validation set
I Place one of those sets in the test set

Q: What do you think about this strategy?



Proposed Strategy #2

Strategy:

I Randomly split the images into training, validation and test

Q: What do you think about this strategy?



Proposed Strategy #3

Strategy:

I Split students into training/validation and test
I If a student is in the test set, then all images generated by that

student is in the test set.
I Hand pick which students are in which set

Q: What do you think about this strategy?



Take-away

I Data splitting is hard
I You will need to make some trade-offs, especially with limited

data
I Be honest when reporting what you did, and explain your

choices



Other thoughts: Recommend use ImageFolder

Sample code:

from google.colab import drive
drive.mount('/content/gdrive')
# Upload data
!unzip '/content/gdrive/My Drive/train_data.zip'
images = datasets.ImageFolder(root='train_data/', transform=transforms.ToTensor())
images = list(images)



Other thoughts: Saving the AlexNet output

I don’t think anyone is there yet, but when you get there. . .

I Don’t compute AlexNet features every time during training!
I Save the features for each input image
I When training your model, start with the saved features (rather

than the image pixels)



Lab Today

I I will be there too
I Walk-through of lab 2 code
I Office Hour Monday 4pm-5pm


	CNN Architectures
	Neural Network Debugging
	Questions?
	Train/Test Split Strategies for Lab 3

