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Agenda

Last class:

I Multi-class classification in PyTorch
I Defining a Neural Network in PyTorch
I Cross Entropy Loss for classification

Today:

I Discuss Labs 1, 2, 3
I Convolutional Neural Networks
I Debugging Neural Networks



How were last two classes?

Q: What is the difference between the validation set and the test
set?

Q: Should you choose hyperparameters based on validation accuracy
or test accuracy?

Q: What is the difference between the softmax and the signmoid
activations?

Q: What do you think about the pacing of the course?
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Labs



Lab 1

I Generally very well done
I Common issues:

I Using builtins functions like sum, input, as variable names
I Using print instead of return
I Not vectorizing code when it is very easy to
I The <Tensor>.dtype attribute: float32 does not mean there

are 32 floats
I Remark requests due by email by June 2nd

I Your mark can go either up or down
I Exception: counting error



Lab 2

I hope this lab was fun!

I Thank you for all the Piazza questions and answers!
I Huan (TA) is working on grading (partially complete)
I Common issue (so far):

I Not re-randomize the weights when trying a new
hyperparameter setting (i.e. reinitialize large_net or
small_net)



Lab 3 Part A

I Jake (TA) is also currently working on grading, consolidating
and anonymizing the data (partially complete)

I Data will be availabe in the next day or two
I Quality of the data might pose a challenge (background,

photoshopping)



Lab 3 Part B

I You don’t need the data to get starter
I You can finish Part 1 after this lecture
I You can also write code for Part 5 after this lecture

I Building a model from scratch is scary, but also really rewarding
I Give yourself a lot of time for training and debugging
I You can use any code from lecture or from the previous labs,

but think about your architecture and choice of loss function!

Come to office hours if you need help!
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Convolutional Neural Networks



Last class, we used fully-connected layers like this:

class MNISTClassifier(nn.Module):
def __init__(self):

super(MNISTClassifier, self).__init__()
self.layer1 = nn.Linear(28 * 28, 50)
self.layer2 = nn.Linear(50, 20)
self.layer3 = nn.Linear(20, 10)

def forward(self, img):
flattened = img.view(-1, 28 * 28)
activation1 = F.relu(self.layer1(flattened))
activation2 = F.relu(self.layer2(activation1))
output = self.layer3(activation2)
return output

Q: How many layers does this network have?

Q: How many weights are in the first layer of this network?
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What if our network is bigger?

I Input image: 200 × 200 pixels
I First hidden layer: 500 units

Q: How many weights are there?

Q: Why would using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I a large number of weights requires a lot of training data to

avoid overfitting
I small shift in image can result in large change in prediction
I does not make use of the geometry of the image
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Convolutional Neural Network

Ideas:

I Locally-connected layers: look for local features in small
regions of the image

I Weight-sharing: detect the same local features across the
entire image



Biological Influence

There is evidence that biological neurons in the visual cortex have
locally-connected connections



Locally Connected Layers



Weight Sharing



Weight Sharing (continued)
Each neuron on the higher layer is detecting the same feature, but
in different locations on the lower layer

“Detecting” = the output (activation) is high if the feature is present

“Feature” = something in the image, like an edge, blob or shape



Forward Pass Example (Greyscale Image)
https://cdn-images-1.medium.com/max/1200/1*GcI7G-JLAQiEoCON7xFbhg.gif

I The kernel or filter (red) contains the trainable weights. In this
picture, the kernel size is 3 × 3

I The “convolved features” is another term for “convolution
output”



Forward Pass Questions (Greyscale Image)

https://cdn-images-1.medium.com/max/1200/1*GcI7G-JLAQiEoCON7xFbhg.gif

Q: What should the value of the next output (to the right of the 4)
be?



Example from Notes (1)

gray=kernel, blue=input, green=output



Example from Notes (2)

gray=kernel, blue=input, green=output



Example from Notes (3)

gray=kernel, blue=input, green=output



Sobel Filter - Weights to Detect Vertical Edges



Sobel Filter - Weights to Detect Horizontal Edges



Weights to Detect Blobs

Q: What is the kernel size of this convolution?



Example:

Greyscale input image: 7 × 7

Convolution kernel: 3 × 3

Questions:

I How many units are in the output?
I How many trainable weights are there?
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What if we have 3 colours?



Convolution in RGB

The kernel becomes a 3-dimensional tensor!

In this example, the kernel has size 3 ×3 × 3



Convolutions: RGB Input

Colour input image: 3 ×7 × 7

Convolution kernel: 3 ×3 × 3

Questions:

I How many units are in the higher layer?
I How many trainable weights are there?



Terminology

Input image: 3 × 32 × 32

Convolution kernel: 3 ×3 × 3

I The number 3 is the number of input channels or input
feature maps



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!
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Many Convolutional Filters

Input image: 3 × 7 × 7

Convolution kernel: 3 × 3 × 3× 5

Questions:

I How many units are in the output?
I How many trainable weights are there?



More Terminology

Input image of size 3 × 32 × 32

Convolution kernel of 3 ×3 × 3× 5

I The number 3 is the number of input channels or input
feature maps

I The number 5 is the number of output channels or output
feature maps



Example

Input features: 5 × 32 × 32

Convolution kernel: 5 × 3 × 3 × 10

Questions:

I How many input channels are there?
I How many output channels are there?
I How many units are in the higher layer?
I How many trainable weights are there?



Convolutional Layers in PyTorch

Let’s take a look at convolutional layers in PyTorch!



Zero Padding

I Add zeros around the border of the image
I (Can add more than one pixel of zeros)

Q: Why might we want to add zero padding?

I Keep the next layer’s width and height consistent with the
previous

I Keep the information around the border of the image
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Zero Padding: Multiple Channels



Zero Padding in PyTorch

PyTorch’s nn.Conv2D has a padding parameter (default 0, you are
not expected to know).

See more at:
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2d



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Max-Pooling

Idea: take the maximum value in each 2 × 2 grid.



Max-Pooling Example

We can add a max-pooling layer after each convolutional layer



Max-Pooling in PyTorch

PyTorch has a nn.MaxPool2d layer

See more at: https://pytorch.org/docs/stable/nn.html#maxpool2d



Average Pooling

I Average pooling (compute the average activation of a region)
I Max pooling generally works better



Strided Convolution

More recently people are doing away with pooling operations, using
strided convolutions instead:

Shift the kernel by 2 (stride=2) when computing the next output
feature.



Visuals

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic



Strided Convolution in PyTorch

PyTorch’s nn.Conv2D has a stride parameter (default 1, you are
expected to know).

See more at:
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2d



Early Convolutional Architecture: LeNet Architecture

I Input: 32x32 pixel, greyscale image
I First convolution has 6 output features (5x5 convolution?)
I First subsampling is probably a max-pooling operation
I Second convolution has 16 output features (5x5 convolution?)
I . . .
I Some number of fully-connected layers at the end



What features do CNN’s detect?



More Convolutional Networks in PyTorch

Let’s look at some more code!

I LargeNet
I AlexNet (Transfer Learning)
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