
APS360 Fundamentals of AI

Lisa Zhang

Lecture 6; May 27, 2019



Agenda

Last class:

I Multi-class classification in PyTorch
I Defining a Neural Network in PyTorch
I Cross Entropy Loss for classification

Today:

I Discuss Labs 1, 2, 3
I Convolutional Neural Networks
I Debugging Neural Networks



How were last two classes?

Q: What is the difference between the validation set and the test
set?

Q: Should you choose hyperparameters based on validation accuracy
or test accuracy?

Q: What is the difference between the softmax and the signmoid
activations?

Q: What do you think about the pacing of the course?



How were last two classes?

Q: What is the difference between the validation set and the test
set?

Q: Should you choose hyperparameters based on validation accuracy
or test accuracy?

Q: What is the difference between the softmax and the signmoid
activations?

Q: What do you think about the pacing of the course?



How were last two classes?

Q: What is the difference between the validation set and the test
set?

Q: Should you choose hyperparameters based on validation accuracy
or test accuracy?

Q: What is the difference between the softmax and the signmoid
activations?

Q: What do you think about the pacing of the course?



How were last two classes?

Q: What is the difference between the validation set and the test
set?

Q: Should you choose hyperparameters based on validation accuracy
or test accuracy?

Q: What is the difference between the softmax and the signmoid
activations?

Q: What do you think about the pacing of the course?



How were last two classes?

Q: What is the difference between the validation set and the test
set?

Q: Should you choose hyperparameters based on validation accuracy
or test accuracy?

Q: What is the difference between the softmax and the signmoid
activations?

Q: What do you think about the pacing of the course?



Labs



Lab 1

I Generally very well done
I Common issues:

I Using builtins functions like sum, input, as variable names
I Using print instead of return
I Not vectorizing code when it is very easy to
I The <Tensor>.dtype attribute: float32 does not mean there

are 32 floats
I Remark requests due by email by June 2nd

I Your mark can go either up or down
I Exception: counting error



Lab 2

I hope this lab was fun!

I Thank you for all the Piazza questions and answers!
I Huan (TA) is working on grading (partially complete)
I Common issue (so far):

I Not re-randomize the weights when trying a new
hyperparameter setting (i.e. reinitialize large_net or
small_net)



Lab 3 Part A

I Jake (TA) is also currently working on grading, consolidating
and anonymizing the data (partially complete)

I Data will be availabe in the next day or two
I Quality of the data might pose a challenge (background,

photoshopping)



Lab 3 Part B

I You don’t need the data to get starter
I You can finish Part 1 after this lecture
I You can also write code for Part 5 after this lecture

I Building a model from scratch is scary, but also really rewarding
I Give yourself a lot of time for training and debugging
I You can use any code from lecture or from the previous labs,

but think about your architecture and choice of loss function!

Come to office hours if you need help!



Lab 3 Part B

I You don’t need the data to get starter
I You can finish Part 1 after this lecture
I You can also write code for Part 5 after this lecture

I Building a model from scratch is scary, but also really rewarding
I Give yourself a lot of time for training and debugging
I You can use any code from lecture or from the previous labs,

but think about your architecture and choice of loss function!

Come to office hours if you need help!



Convolutional Neural Networks



Last class, we used fully-connected layers like this:

class MNISTClassifier(nn.Module):
def __init__(self):

super(MNISTClassifier, self).__init__()
self.layer1 = nn.Linear(28 * 28, 50)
self.layer2 = nn.Linear(50, 20)
self.layer3 = nn.Linear(20, 10)

def forward(self, img):
flattened = img.view(-1, 28 * 28)
activation1 = F.relu(self.layer1(flattened))
activation2 = F.relu(self.layer2(activation1))
output = self.layer3(activation2)
return output

Q: How many layers does this network have?

Q: How many weights are in the first layer of this network?



Last class, we used fully-connected layers like this:

class MNISTClassifier(nn.Module):
def __init__(self):

super(MNISTClassifier, self).__init__()
self.layer1 = nn.Linear(28 * 28, 50)
self.layer2 = nn.Linear(50, 20)
self.layer3 = nn.Linear(20, 10)

def forward(self, img):
flattened = img.view(-1, 28 * 28)
activation1 = F.relu(self.layer1(flattened))
activation2 = F.relu(self.layer2(activation1))
output = self.layer3(activation2)
return output

Q: How many layers does this network have?

Q: How many weights are in the first layer of this network?



Last class, we used fully-connected layers like this:

class MNISTClassifier(nn.Module):
def __init__(self):

super(MNISTClassifier, self).__init__()
self.layer1 = nn.Linear(28 * 28, 50)
self.layer2 = nn.Linear(50, 20)
self.layer3 = nn.Linear(20, 10)

def forward(self, img):
flattened = img.view(-1, 28 * 28)
activation1 = F.relu(self.layer1(flattened))
activation2 = F.relu(self.layer2(activation1))
output = self.layer3(activation2)
return output

Q: How many layers does this network have?

Q: How many weights are in the first layer of this network?



What if our network is bigger?

I Input image: 200 × 200 pixels
I First hidden layer: 500 units

Q: How many weights are there?

Q: Why would using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I a large number of weights requires a lot of training data to

avoid overfitting
I small shift in image can result in large change in prediction
I does not make use of the geometry of the image



What if our network is bigger?

I Input image: 200 × 200 pixels
I First hidden layer: 500 units

Q: How many weights are there?

Q: Why would using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I a large number of weights requires a lot of training data to

avoid overfitting
I small shift in image can result in large change in prediction
I does not make use of the geometry of the image



What if our network is bigger?

I Input image: 200 × 200 pixels
I First hidden layer: 500 units

Q: How many weights are there?

Q: Why would using a fully connected layer be problematic?

I computing predictions (forward pass) will take a long time
I a large number of weights requires a lot of training data to

avoid overfitting
I small shift in image can result in large change in prediction
I does not make use of the geometry of the image



Convolutional Neural Network

Ideas:

I Locally-connected layers: look for local features in small
regions of the image

I Weight-sharing: detect the same local features across the
entire image



Biological Influence

There is evidence that biological neurons in the visual cortex have
locally-connected connections



Locally Connected Layers



Weight Sharing



Weight Sharing (continued)
Each neuron on the higher layer is detecting the same feature, but
in different locations on the lower layer

“Detecting” = the output (activation) is high if the feature is present

“Feature” = something in the image, like an edge, blob or shape



Forward Pass Example (Greyscale Image)
https://cdn-images-1.medium.com/max/1200/1*GcI7G-JLAQiEoCON7xFbhg.gif

I The kernel or filter (red) contains the trainable weights. In this
picture, the kernel size is 3 × 3

I The “convolved features” is another term for “convolution
output”



Forward Pass Questions (Greyscale Image)

https://cdn-images-1.medium.com/max/1200/1*GcI7G-JLAQiEoCON7xFbhg.gif

Q: What should the value of the next output (to the right of the 4)
be?



Example from Notes (1)

gray=kernel, blue=input, green=output



Example from Notes (2)

gray=kernel, blue=input, green=output



Example from Notes (3)

gray=kernel, blue=input, green=output



Sobel Filter - Weights to Detect Vertical Edges



Sobel Filter - Weights to Detect Horizontal Edges



Weights to Detect Blobs

Q: What is the kernel size of this convolution?



Example:

Greyscale input image: 7 × 7

Convolution kernel: 3 × 3

Questions:

I How many units are in the output?
I How many trainable weights are there?



Example:

Greyscale input image: 7 × 7

Convolution kernel: 3 × 3

Questions:

I How many units are in the output?
I How many trainable weights are there?



What if we have 3 colours?



Convolution in RGB

The kernel becomes a 3-dimensional tensor!

In this example, the kernel has size 3 ×3 × 3



Convolutions: RGB Input

Colour input image: 3 ×7 × 7

Convolution kernel: 3 ×3 × 3

Questions:

I How many units are in the higher layer?
I How many trainable weights are there?



Terminology

Input image: 3 × 32 × 32

Convolution kernel: 3 ×3 × 3

I The number 3 is the number of input channels or input
feature maps



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!



Detecting Multiple Features

Q: What if we want to detect many features of the input? (i.e.
both horizontal edges and vertical edges, and maybe even other
features?)

A: Have many convolutional filters!



Many Convolutional Filters

Input image: 3 × 7 × 7

Convolution kernel: 3 × 3 × 3× 5

Questions:

I How many units are in the output?
I How many trainable weights are there?



More Terminology

Input image of size 3 × 32 × 32

Convolution kernel of 3 ×3 × 3× 5

I The number 3 is the number of input channels or input
feature maps

I The number 5 is the number of output channels or output
feature maps



Example

Input features: 5 × 32 × 32

Convolution kernel: 5 × 3 × 3 × 10

Questions:

I How many input channels are there?
I How many output channels are there?
I How many units are in the higher layer?
I How many trainable weights are there?



Convolutional Layers in PyTorch

Let’s take a look at convolutional layers in PyTorch!



Zero Padding

I Add zeros around the border of the image
I (Can add more than one pixel of zeros)

Q: Why might we want to add zero padding?

I Keep the next layer’s width and height consistent with the
previous

I Keep the information around the border of the image



Zero Padding

I Add zeros around the border of the image
I (Can add more than one pixel of zeros)

Q: Why might we want to add zero padding?

I Keep the next layer’s width and height consistent with the
previous

I Keep the information around the border of the image



Zero Padding: Multiple Channels



Zero Padding in PyTorch

PyTorch’s nn.Conv2D has a padding parameter (default 0, you are
not expected to know).

See more at:
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2d



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Consolidating Information

In a neural network with fully-connected layers, we reduced the
number of units in each hidden layer

Q: Why?

I To be able to consolidate information, and remove out
information not useful for the current task

Q: How can we consolidate information in a neural network with
convolutional layers?

I max pooling, average pooling, strided convolutions



Max-Pooling

Idea: take the maximum value in each 2 × 2 grid.



Max-Pooling Example

We can add a max-pooling layer after each convolutional layer



Max-Pooling in PyTorch

PyTorch has a nn.MaxPool2d layer

See more at: https://pytorch.org/docs/stable/nn.html#maxpool2d



Average Pooling

I Average pooling (compute the average activation of a region)
I Max pooling generally works better



Strided Convolution

More recently people are doing away with pooling operations, using
strided convolutions instead:

Shift the kernel by 2 (stride=2) when computing the next output
feature.



Visuals

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic



Strided Convolution in PyTorch

PyTorch’s nn.Conv2D has a stride parameter (default 1, you are
expected to know).

See more at:
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv2d



Early Convolutional Architecture: LeNet Architecture

I Input: 32x32 pixel, greyscale image
I First convolution has 6 output features (5x5 convolution?)
I First subsampling is probably a max-pooling operation
I Second convolution has 16 output features (5x5 convolution?)
I . . .
I Some number of fully-connected layers at the end



What features do CNN’s detect?



More Convolutional Networks in PyTorch

Let’s look at some more code!

I LargeNet
I AlexNet (Transfer Learning)


	Labs
	Convolutional Neural Networks

