
APS360 Fundamentals of AI

Lisa Zhang

Lecture 3; May 13, 2019

Agenda

Last Class:

I We trained our first neural network!

This Class:

I Review new ideas / terminology
I activation functions
I neural network architecture
I training / test sets

I More on neural network training
I (We won’t get through all the slides today)

Reminder: Lab 1 is due May 15, 9pm

I will be away the next two classes. Jake will deliver the lectures.

Agenda

Last Class:

I We trained our first neural network!

This Class:

I Review new ideas / terminology
I activation functions
I neural network architecture
I training / test sets

I More on neural network training
I (We won’t get through all the slides today)

Reminder: Lab 1 is due May 15, 9pm

I will be away the next two classes. Jake will deliver the lectures.

Agenda

Last Class:

I We trained our first neural network!

This Class:

I Review new ideas / terminology
I activation functions
I neural network architecture
I training / test sets

I More on neural network training
I (We won’t get through all the slides today)

Reminder: Lab 1 is due May 15, 9pm

I will be away the next two classes. Jake will deliver the lectures.

Last Class

Code from Last Class

It is completely okay to not understand all the code.

We will be writing very similar code several times.

You should have a high-level understanding of how neural networks
are trained, and how it is similar/different from “training” a
biological neural network.

Supervised Training

Here is how we will train our artificial neural network:

1. Make a prediction for some input data, whose output we
already know.

2. Compare the predicted output to the ground truth (actual
output).

3. Adjust the weights/biases to make the prediction close to the
ground truth.

4. Repeat steps 1-3 for some number of iterations.

Problem

From last class. . .

I Input: An 28x28 pixel image
I Output: Whether the digit is a small digit (0, 1, or 2)

I output=1 means that the digit is small
I output=0 means that the digit is not small

Making Predictions

Code from last class:

inval = img_to_tensor(image)
outval = pigeon(inval) # compute output activation
prob = torch.sigmoid(outval) # turn into a probability

How do we convert a (continuous) probability into a (discrete)
prediction?

Cut-off at 0.5

We set a threshold at prob = 0.5.

For example, in this code:

error = 0
for (image, label) in mnist_train[:1000]:

prob = torch.sigmoid(pigeon(img_to_tensor(image)))
if (prob < 0.5 and label < 3) or \

(prob >= 0.5 and label >= 3):
error += 1

First Hour of Today

I Start by reviewing the new ideas and terminology
I We’ll write more code starting in the second hour

Neural Network Terminology

Review: Biological Neuron

Review: Artificial Neuron

Activation Function

An activation function computes the activation of the neuron
based on the total contributions from neurons in the layer below.

The activation function should be nonlinear. (Why?)

ReLU Activation

Sigmoid Activation

Tanh Activation

Parameters

The parameters of a network are the numbers that can be tuned to
train the network. The parameters include the weights and biases.

We often use weights and parameters synonymously.

The number of parameters of a network is a measure of its size.

Neural Network Architecture

An architecture of a neural network describes the neurons and
their connectivity in the network.

Feed-forward network

Information only flows from one layer to a later layer, from the input
to the output.

Fully-connected layer

Neurons between adjacent layers are fully pairwise connected.

Number of Layers

This is a 2-layer neural network. We do not count the input layer,
so the number of layers equal number of sets of weights and baises.

Number of Layers

This is a 3-layer neural network.

Training

We train a neural network to adjust its weights

Loss (Loss Function)

A loss function L(actual , predicted) computes how “bad” a set of
predictions was, compared to the ground truth.

I Large loss = the network’s prediction differs from the ground
truth

I Small loss = the network’s prediction matches the ground truth

Optimizer

An optimizer determines, based on the value of the loss function,
how each parameter should change.

The optimizer solves the credit assignment problem: how do we
assign credit (blame) to the parameters when the network performs
poorly?

Optimize Step

We take one step towards solving the optimization problem:

minweightsL(actual , predicted , weights)

How do we do this?

Using an optimizer like gradient descent.

Optimize Step

We take one step towards solving the optimization problem:

minweightsL(actual , predicted , weights)

How do we do this?

Using an optimizer like gradient descent.

Optimizer: Gradient Descent

All neural network optimizers you see in this course will be based on
gradient descent.

We use the derivative of the loss function at a training example, and
take a step towards its negative gradient.

You don’t need to know how optimizers work for this course.

From learning to optimization

Defining a loss function turned a learning problem into an
optimization problem.

I Recurrent theme in Machine Learning

Determining what to optimize is not trivial!

Caveats

Train, and Test Set

I Training Set: Used to tune parameters
I Test Set: Used to measure network accuracy

Training and Test Splits

For standard data sets, there are standard train/test splits:

mnist_train = datasets.MNIST('data', train=True)
mnist_test = datasets.MNIST('data', train=False)

Why?

Neural Network Training

Last week’s training code

I We drew motivations from “training” real pigeons
I However, artificial neural networks are unlike biological pigeon

in important ways

Summary of last week’s training code

1. use our network to make the predictions for one image
2. compute the loss for that one image
3. take a “step” to optimize the loss of the one image

Batching

1. use our network to make the predictions for n images
2. compute the average loss for those n image
3. take a “step” to optimize the average loss of those n image

Averaging Loss

I Average loss across multiple training inputs is less “noisy”
I Less likely to provide “bad information” because of a single
“bad” input

(You can think of the average loss as an approximation of the loss
across the entire training set.)

Training without batching

for (image, label) in mnist_train[:1000]:
actual ground truth: is the digit less than 3?
actual = (label < 3).reshape([1,1]) \

.type(torch.FloatTensor)
prediction
out = pigeon(img_to_tensor(image))
update the parameters based on the loss
loss = criterion(out, actual) # compute loss
loss.backward() # compute param updates
optimizer.step() # make param updates
optimizer.zero_grad() # clean up

Training without batching (no comments)

for (image, label) in mnist_train[:1000]:

actual = (label < 3).reshape([1,1]) \
.type(torch.FloatTensor)

out = pigeon(img_to_tensor(image))
loss = criterion(out, actual)
loss.backward()
optimizer.step()
optimizer.zero_grad()

Training with batching

train_loader = torch.utils.data.DataLoader(
mnist_train,
batch_size=64)

for n, (imgs, labels) in enumerate(train_loader):
if n >= 10: break
actual = (label < 3).reshape([1,1]) \

.type(torch.FloatTensor)
out = pigeon(img_to_tensor(image))
loss = criterion(out, actual)
loss.backward()
optimizer.step()
optimizer.zero_grad()

The inside of the loop looks exactly the same!

Training with batching

train_loader = torch.utils.data.DataLoader(
mnist_train,
batch_size=64)

for n, (imgs, labels) in enumerate(train_loader):
if n >= 10: break
actual = (label < 3).reshape([1,1]) \

.type(torch.FloatTensor)
out = pigeon(img_to_tensor(image))
loss = criterion(out, actual)
loss.backward()
optimizer.step()
optimizer.zero_grad()

The inside of the loop looks exactly the same!

Let’s try it out!

Batch Size

The batch size is the number of training examples used per
optimization “step”.

Each optimization “step” is known as an iteration.

The parameters are updated once per iteration.

Q: What happens if the batch size is too small? Too large?

Ineffective Batch Size

I Too small:
I We optimize a (possily very) different function L at each

iteration
I Noisy

I Too large:
I Expensive
I Average loss might not change very much as batch size grows

Epoch

An epoch is a measure of the number of times all training data are
used once to update the parameters.

Example:

I There are 1000 images we use for training
I If batch_size = 10 then 100 iterations = 1 epoch

Optimizer Settings

I The optimizer settings can also affect the speed of neural
network training.

optimizer = optim.SGD(pigeon.parameters()
lr=0.005,
momentum=0.9)

Learning Rate

The learning rate determines the size of the “step” that an
optimizer takes during each iteration.

Larger step size = make a bigger change in the parameters in each
iteration.

Q: What happens if the learning rate is small? Large?

Learning Rate Size

I Too small:
I Parameters don’t change very much in each iteration
I Takes a long time to train the network

I Too large:
I “Noisy”
I Average loss might not change very much as batch size grows
I Very large can be detrimental to neural network training

Appropriate Learning Rate

Depends on:

I The learning problem
I The optimizer
I The batch size

I Smaller learning rate for larger batch size
I Larger learning rate for smaller batch size

I The stage of training
I Reduce learning rate as training progresses

Tracking Training

I How do we know when to stop training?
I Is training going well?
I Do we have a good batch size?
I Do we have a good learning rate?

Training Curve for Biological Pigeon

Training Curve

I x-axis: epochs or iterations
I y-axis: loss, error, or accuracy

Typical Training Curve

Assessing the Fit

Hyperparameters

I Size of network
I Number of layers
I Number of neurons in each layer

I Choice of Activation Function
I Learning Rate
I Batch Size

Q: How do we tune hyperparameters?

Lab 2

I Distinguishing cats and dogs
I You have pretty much everything you need to begin assignment

2!

	Neural Network Terminology
	Neural Network Training
	Let's try it out!

