APS360 Fundamentals of AI

Lisa Zhang

Lecture 3; May 13, 2019

Agenda

Last Class:

We trained our first neural network!

This Class:

- Review new ideas / terminology
 - activation functions
 - neural network architecture
 - training / test sets
- More on neural network training
- (We won't get through all the slides today)

Agenda

Last Class:

We trained our first neural network!

This Class:

- Review new ideas / terminology
 - activation functions
 - neural network architecture
 - training / test sets
- More on neural network training
- (We won't get through all the slides today)

Reminder: Lab 1 is due May 15, 9pm

Agenda

Last Class:

We trained our first neural network!

This Class:

- Review new ideas / terminology
 - activation functions
 - neural network architecture
 - training / test sets
- More on neural network training
- (We won't get through all the slides today)

Reminder: Lab 1 is due May 15, 9pm

I will be away the next two classes. Jake will deliver the lectures.

Last Class

It is completely okay to not understand all the code.

We will be writing very similar code several times.

You should have a high-level understanding of how neural networks are trained, and how it is similar/different from "training" a biological neural network.

Here is how we will train our artificial neural network:

- 1. Make a prediction for some input data, whose output we already know.
- 2. Compare the predicted output to the *ground truth* (actual output).
- 3. Adjust the *weights/biases* to make the prediction close to the ground truth.
- 4. Repeat steps 1-3 for some number of iterations.

Problem

From last class...

- Input: An 28x28 pixel image
- Output: Whether the digit is a small digit (0, 1, or 2)
 - output=1 means that the digit is small
 - output=0 means that the digit is not small

Code from last class:

```
inval = img_to_tensor(image)
outval = pigeon(inval)  # compute output activation
prob = torch.sigmoid(outval) # turn into a probability
```

How do we convert a (continuous) probability into a (discrete) prediction?

Cut-off at 0.5

First Hour of Today

- Start by reviewing the new ideas and terminology
- We'll write more code starting in the second hour

Neural Network Terminology

Review: Biological Neuron

Review: Artificial Neuron

An **activation function** computes the activation of the neuron based on the total contributions from neurons in the layer below.

The activation function should be **nonlinear**. (Why?)

ReLU Activation

Sigmoid Activation

Tanh Activation

Parameters

The **parameters** of a network are the numbers that can be tuned to train the network. The parameters include the **weights** and **biases**.

We often use weights and parameters synonymously.

The number of parameters of a network is a measure of its size.

Neural Network Architecture

An **architecture** of a neural network describes the neurons and their connectivity in the network.

Feed-forward network

Information only flows from one layer to a later layer, from the input to the output.

Fully-connected layer

Neurons between adjacent layers are fully pairwise connected.

Number of Layers

This is a 2-layer neural network. We do not count the *input layer*, so the number of layers equal number of sets of weights and baises.

Number of Layers

This is a 3-layer neural network.

We train a neural network to adjust its weights

A loss function L(actual, predicted) computes how "bad" a set of predictions was, compared to the ground truth.

- Large loss = the network's prediction differs from the ground truth
- Small loss = the network's prediction matches the ground truth

An optimizer determines, based on the value of the **loss function**, how each parameter should change.

The optimizer solves the **credit assignment problem**: how do we assign credit (blame) to the parameters when the network performs poorly?

We take **one step** towards solving the optimization problem: $min_{weights}L(actual, predicted, weights)$ How do we do this? We take **one step** towards solving the optimization problem: *min_{weights}L(actual, predicted, weights)* How do we do this? Using an optimizer like **gradient descent**. All neural network optimizers you see in this course will be based on **gradient descent**.

We use the derivative of the loss function at a training example, and take a step towards its negative gradient.

You don't need to know how optimizers work for this course.

From learning to optimization

Defining a loss function turned a **learning problem** into an **optimization problem**.

Recurrent theme in Machine Learning

Determining what to optimize is not trivial!

Caveats

Custard Smingleigh @Smingleigh

Follow

I hooked a neural network up to my Roomba. I wanted it to learn to navigate without bumping into things, so I set up a reward scheme to encourage speed and discourage hitting the bumper sensors.

It learnt to drive backwards, because there are no bumpers on the back.

 addibility
 Jim Stormdancer @mogwai_poet

 Jim Stormdancer @mogwai_poet
 Someone compiled a list of instances of Al doing what creators specify, not what they mean:

 am of lid mogwai_end O run
 Someone compiled a list of instances of Al doing what creators specify, not what they mean:

 advorted for run
 Someone compiled a list of instances of Al doing what creators specify, not what they mean:

 advorted for run
 Someone compiled a list of instances of Al doing what creators specify and the specific of t

1:18 AM - 8 Nov 2018

5,280 Retweets 13,116 Likes 🛛 🚱 🚱 🚭 🌚 🎲 🚱 🗾

Train, and Test Set

- Training Set: Used to tune parameters
- Test Set: Used to measure network accuracy

```
For standard data sets, there are standard train/test splits:
mnist_train = datasets.MNIST('data', train=True)
mnist_test = datasets.MNIST('data', train=False)
Why?
```

Neural Network Training

Last week's training code

- We drew motivations from "training" real pigeons
- However, artificial neural networks are unlike biological pigeon in important ways

Summary of last week's training code

- use our network to make the predictions for one image
 compute the loss for that one image
- 3. take a "step" to optimize the loss of the **one image**

Batching

- 1. use our network to make the predictions for n images
- 2. compute the *average* loss for those *n* image
- 3. take a "step" to optimize the *average* loss of those *n* image

Averaging Loss

- Average loss across multiple training inputs is less "noisy"
- Less likely to provide "bad information" because of a single "bad" input

(You can think of the *average loss* as an approximation of the loss across the entire training set.)

Training without batching

for (image, label) in mnist_train[:1000]: # actual ground truth: is the digit less than 3? actual = (label < 3).reshape $([1,1]) \setminus$.type(torch.FloatTensor) # prediction out = pigeon(img to tensor(image)) # update the parameters based on the loss loss = criterion(out, actual) # compute loss loss.backward() *# compute param updates* optimizer.step() # make param updates optimizer.zero_grad() # clean up

Training without batching (no comments)

for (image, label) in mnist_train[:1000]:

```
actual = (label < 3).reshape([1,1]) \
                                  .type(torch.FloatTensor)
out = pigeon(img_to_tensor(image))
loss = criterion(out, actual)
loss.backward()
optimizer.step()
optimizer.zero_grad()</pre>
```

Training with batching

```
train loader = torch.utils.data.DataLoader(
                    mnist_train,
                    batch size=64)
for n, (imgs, labels) in enumerate(train loader):
    if n \ge 10: break
    actual = (label < 3).reshape([1,1]) \
                         .type(torch.FloatTensor)
    out = pigeon(img to tensor(image))
    loss = criterion(out, actual)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

Training with batching

```
train loader = torch.utils.data.DataLoader(
                    mnist_train,
                    batch size=64)
for n, (imgs, labels) in enumerate(train loader):
    if n \ge 10 break
    actual = (label < 3).reshape([1,1]) \
                         .type(torch.FloatTensor)
    out = pigeon(img_to_tensor(image))
    loss = criterion(out, actual)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

The inside of the loop looks exactly the same!

Let's try it out!

Batch Size

- The **batch size** is the number of training examples used per optimization "step".
- Each optimization "step" is known as an **iteration**.
- The parameters are updated once per iteration.
- Q: What happens if the batch size is too small? Too large?

Ineffective Batch Size

► Too small:

- ► We optimize a (possily very) different function L at each iteration
- Noisy
- Too large:
 - Expensive
 - Average loss might not change very much as batch size grows

An **epoch** is a measure of the number of times all training data are used once to update the parameters.

Example:

- There are 1000 images we use for training
- If batch_size = 10 then 100 iterations = 1 epoch

Optimizer Settings

 The optimizer settings can also affect the speed of neural network training.

The **learning rate** determines the size of the "step" that an optimizer takes during each *iteration*.

Larger step size = make a bigger change in the parameters in each iteration.

Q: What happens if the learning rate is small? Large?

Learning Rate Size

Too small:

- Parameters don't change very much in each iteration
- Takes a long time to train the network

Too large:

- "Noisy"
- Average loss might not change very much as batch size grows
- Very large can be detrimental to neural network training

Appropriate Learning Rate

Depends on:

- The learning problem
- The optimizer
- The batch size
 - Smaller learning rate for larger batch size
 - Larger learning rate for smaller batch size
- The stage of training
 - Reduce learning rate as training progresses

Tracking Training

- How do we know when to stop training?
- Is training going well?
- Do we have a good batch size?
- Do we have a good learning rate?

Training Curve for Biological Pigeon

Training Curve

- x-axis: epochs or iterations
- > y-axis: loss, error, or accuracy

Typical Training Curve

Assessing the Fit

Hyperparameters

- Size of network
 - Number of layers
 - Number of neurons in each layer
- Choice of Activation Function
- Learning Rate
- Batch Size
- Q: How do we tune hyperparameters?

- Distinguishing cats and dogs
- You have pretty much everything you need to begin assignment 2!